Added new runqueue
authorJens Krieg <jkrieg@mailbox.tu-berlin.de>
Thu, 30 May 2013 17:08:31 +0000 (19:08 +0200)
committerJens Krieg <jkrieg@mailbox.tu-berlin.de>
Thu, 30 May 2013 17:08:31 +0000 (19:08 +0200)
19 files changed:
kernel/sched.new/core.c
kernel/sched.new/sched.h
kernel/sched.old/Makefile [deleted file]
kernel/sched.old/auto_group.c [deleted file]
kernel/sched.old/auto_group.h [deleted file]
kernel/sched.old/clock.c [deleted file]
kernel/sched.old/core.c [deleted file]
kernel/sched.old/cpupri.c [deleted file]
kernel/sched.old/cpupri.h [deleted file]
kernel/sched.old/cputime.c [deleted file]
kernel/sched.old/debug.c [deleted file]
kernel/sched.old/fair.c [deleted file]
kernel/sched.old/features.h [deleted file]
kernel/sched.old/idle_task.c [deleted file]
kernel/sched.old/rt.c [deleted file]
kernel/sched.old/sched.h [deleted file]
kernel/sched.old/stats.c [deleted file]
kernel/sched.old/stats.h [deleted file]
kernel/sched.old/stop_task.c [deleted file]

index 2563010..d2a2e4d 100644 (file)
@@ -111,6 +111,8 @@ void sched_init(void)
 
                rq = cpu_rq(i);
 
+               INIT_LIST_HEAD(&rq->rq_list);
+
 //             raw_spin_lock_init(&rq->lock);
                rq->nr_running = 0;
 
@@ -204,7 +206,6 @@ void sched_fork(struct task_struct *p)
        p->se.exec_start                = 0;
        p->se.sum_exec_runtime          = 0;
        p->se.prev_sum_exec_runtime     = 0;
-       p->se.nr_migrations             = 0;
        p->se.vruntime                  = 0;
        INIT_LIST_HEAD(&p->se.group_node);
 
@@ -568,7 +569,7 @@ void wake_up_new_task(struct task_struct *tsk)
 {
        struct rq *rq = cpu_rq(0);
 
-       //TODO: add new linked list to hold tasks
+       list_add_tail(tsk->se->group_node, rq->rq_list);
        tsk->on_rq = 1;
 }
 
@@ -728,7 +729,7 @@ static void __sched __schedule(void)
 
 //     put_prev_task(rq, prev);
 //     next = pick_next_task(rq);
-       next = (struct task_struct*)rq->curr->tasks.next;
+       next = rq->rq_list->
 //     clear_tsk_need_resched(prev);
        rq->skip_clock_update = 0;
 
index d683d38..abd908b 100644 (file)
@@ -2,6 +2,8 @@
 #include <linux/sched/sysctl.h>
 #include <linux/sched/rt.h>
 
+#include <linux/list.h>
+
 
 struct task_group {
 };
@@ -10,19 +12,15 @@ struct rq {
        /* runqueue lock: */
        raw_spinlock_t lock;
 
+       struct list_head rq_list;
+
        /*
         * nr_running and cpu_load should be in the same cacheline because
         * remote CPUs use both these fields when doing load calculation.
         */
        unsigned int nr_running;
-       #define CPU_LOAD_IDX_MAX 5
-       unsigned long cpu_load[CPU_LOAD_IDX_MAX];
-       unsigned long last_load_update_tick;
-       int skip_clock_update;
-
-       /* capture load from *all* tasks on this cpu: */
-       struct load_weight load;
-       unsigned long nr_load_updates;
+
+
        u64 nr_switches;
 
        /*
@@ -34,20 +32,8 @@ struct rq {
        unsigned long nr_uninterruptible;
 
        struct task_struct *curr, *idle, *stop;
-       struct task_struct *next;
-       unsigned long next_balance;
-       struct mm_struct *prev_mm;
 
-       u64 clock;
-       u64 clock_task;
-
-       atomic_t nr_iowait;
-
-       /* calc_load related fields */
-       unsigned long calc_load_update;
-       long calc_load_active;
-
-       struct sched_avg avg;
+       struct mm_struct *prev_mm;
 };
 
 DECLARE_PER_CPU(struct rq, runqueues);
diff --git a/kernel/sched.old/Makefile b/kernel/sched.old/Makefile
deleted file mode 100644 (file)
index 6a700b8..0000000
+++ /dev/null
@@ -1,18 +0,0 @@
-ifdef CONFIG_FUNCTION_TRACER
-CFLAGS_REMOVE_clock.o = -pg
-endif
-
-ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y)
-# According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is
-# needed for x86 only.  Why this used to be enabled for all architectures is beyond
-# me.  I suspect most platforms don't need this, but until we know that for sure
-# I turn this off for IA-64 only.  Andreas Schwab says it's also needed on m68k
-# to get a correct value for the wait-channel (WCHAN in ps). --davidm
-CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer
-endif
-
-#obj-y += core.o clock.o cputime.o idle_task.o fair.o rt.o stop_task.o
-#obj-$(CONFIG_SMP) += cpupri.o
-#obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o
-#obj-$(CONFIG_SCHEDSTATS) += stats.o
-#obj-$(CONFIG_SCHED_DEBUG) += debug.o
diff --git a/kernel/sched.old/auto_group.c b/kernel/sched.old/auto_group.c
deleted file mode 100644 (file)
index 64de5f8..0000000
+++ /dev/null
@@ -1,261 +0,0 @@
-#ifdef CONFIG_SCHED_AUTOGROUP
-
-#include "sched.h"
-
-#include <linux/proc_fs.h>
-#include <linux/seq_file.h>
-#include <linux/kallsyms.h>
-#include <linux/utsname.h>
-#include <linux/security.h>
-#include <linux/export.h>
-
-unsigned int __read_mostly sysctl_sched_autogroup_enabled = 1;
-static struct autogroup autogroup_default;
-static atomic_t autogroup_seq_nr;
-
-void __init autogroup_init(struct task_struct *init_task)
-{
-       autogroup_default.tg = &root_task_group;
-       kref_init(&autogroup_default.kref);
-       init_rwsem(&autogroup_default.lock);
-       init_task->signal->autogroup = &autogroup_default;
-}
-
-void autogroup_free(struct task_group *tg)
-{
-       kfree(tg->autogroup);
-}
-
-static inline void autogroup_destroy(struct kref *kref)
-{
-       struct autogroup *ag = container_of(kref, struct autogroup, kref);
-
-#ifdef CONFIG_RT_GROUP_SCHED
-       /* We've redirected RT tasks to the root task group... */
-       ag->tg->rt_se = NULL;
-       ag->tg->rt_rq = NULL;
-#endif
-       sched_offline_group(ag->tg);
-       sched_destroy_group(ag->tg);
-}
-
-static inline void autogroup_kref_put(struct autogroup *ag)
-{
-       kref_put(&ag->kref, autogroup_destroy);
-}
-
-static inline struct autogroup *autogroup_kref_get(struct autogroup *ag)
-{
-       kref_get(&ag->kref);
-       return ag;
-}
-
-static inline struct autogroup *autogroup_task_get(struct task_struct *p)
-{
-       struct autogroup *ag;
-       unsigned long flags;
-
-       if (!lock_task_sighand(p, &flags))
-               return autogroup_kref_get(&autogroup_default);
-
-       ag = autogroup_kref_get(p->signal->autogroup);
-       unlock_task_sighand(p, &flags);
-
-       return ag;
-}
-
-static inline struct autogroup *autogroup_create(void)
-{
-       struct autogroup *ag = kzalloc(sizeof(*ag), GFP_KERNEL);
-       struct task_group *tg;
-
-       if (!ag)
-               goto out_fail;
-
-       tg = sched_create_group(&root_task_group);
-
-       if (IS_ERR(tg))
-               goto out_free;
-
-       sched_online_group(tg, &root_task_group);
-
-       kref_init(&ag->kref);
-       init_rwsem(&ag->lock);
-       ag->id = atomic_inc_return(&autogroup_seq_nr);
-       ag->tg = tg;
-#ifdef CONFIG_RT_GROUP_SCHED
-       /*
-        * Autogroup RT tasks are redirected to the root task group
-        * so we don't have to move tasks around upon policy change,
-        * or flail around trying to allocate bandwidth on the fly.
-        * A bandwidth exception in __sched_setscheduler() allows
-        * the policy change to proceed.  Thereafter, task_group()
-        * returns &root_task_group, so zero bandwidth is required.
-        */
-       free_rt_sched_group(tg);
-       tg->rt_se = root_task_group.rt_se;
-       tg->rt_rq = root_task_group.rt_rq;
-#endif
-       tg->autogroup = ag;
-
-       return ag;
-
-out_free:
-       kfree(ag);
-out_fail:
-       if (printk_ratelimit()) {
-               printk(KERN_WARNING "autogroup_create: %s failure.\n",
-                       ag ? "sched_create_group()" : "kmalloc()");
-       }
-
-       return autogroup_kref_get(&autogroup_default);
-}
-
-bool task_wants_autogroup(struct task_struct *p, struct task_group *tg)
-{
-       if (tg != &root_task_group)
-               return false;
-
-       if (p->sched_class != &fair_sched_class)
-               return false;
-
-       /*
-        * We can only assume the task group can't go away on us if
-        * autogroup_move_group() can see us on ->thread_group list.
-        */
-       if (p->flags & PF_EXITING)
-               return false;
-
-       return true;
-}
-
-static void
-autogroup_move_group(struct task_struct *p, struct autogroup *ag)
-{
-       struct autogroup *prev;
-       struct task_struct *t;
-       unsigned long flags;
-
-       BUG_ON(!lock_task_sighand(p, &flags));
-
-       prev = p->signal->autogroup;
-       if (prev == ag) {
-               unlock_task_sighand(p, &flags);
-               return;
-       }
-
-       p->signal->autogroup = autogroup_kref_get(ag);
-
-       if (!ACCESS_ONCE(sysctl_sched_autogroup_enabled))
-               goto out;
-
-       t = p;
-       do {
-               sched_move_task(t);
-       } while_each_thread(p, t);
-
-out:
-       unlock_task_sighand(p, &flags);
-       autogroup_kref_put(prev);
-}
-
-/* Allocates GFP_KERNEL, cannot be called under any spinlock */
-void sched_autogroup_create_attach(struct task_struct *p)
-{
-       struct autogroup *ag = autogroup_create();
-
-       autogroup_move_group(p, ag);
-       /* drop extra reference added by autogroup_create() */
-       autogroup_kref_put(ag);
-}
-EXPORT_SYMBOL(sched_autogroup_create_attach);
-
-/* Cannot be called under siglock.  Currently has no users */
-void sched_autogroup_detach(struct task_struct *p)
-{
-       autogroup_move_group(p, &autogroup_default);
-}
-EXPORT_SYMBOL(sched_autogroup_detach);
-
-void sched_autogroup_fork(struct signal_struct *sig)
-{
-       sig->autogroup = autogroup_task_get(current);
-}
-
-void sched_autogroup_exit(struct signal_struct *sig)
-{
-       autogroup_kref_put(sig->autogroup);
-}
-
-static int __init setup_autogroup(char *str)
-{
-       sysctl_sched_autogroup_enabled = 0;
-
-       return 1;
-}
-
-__setup("noautogroup", setup_autogroup);
-
-#ifdef CONFIG_PROC_FS
-
-int proc_sched_autogroup_set_nice(struct task_struct *p, int nice)
-{
-       static unsigned long next = INITIAL_JIFFIES;
-       struct autogroup *ag;
-       int err;
-
-       if (nice < -20 || nice > 19)
-               return -EINVAL;
-
-       err = security_task_setnice(current, nice);
-       if (err)
-               return err;
-
-       if (nice < 0 && !can_nice(current, nice))
-               return -EPERM;
-
-       /* this is a heavy operation taking global locks.. */
-       if (!capable(CAP_SYS_ADMIN) && time_before(jiffies, next))
-               return -EAGAIN;
-
-       next = HZ / 10 + jiffies;
-       ag = autogroup_task_get(p);
-
-       down_write(&ag->lock);
-       err = sched_group_set_shares(ag->tg, prio_to_weight[nice + 20]);
-       if (!err)
-               ag->nice = nice;
-       up_write(&ag->lock);
-
-       autogroup_kref_put(ag);
-
-       return err;
-}
-
-void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m)
-{
-       struct autogroup *ag = autogroup_task_get(p);
-
-       if (!task_group_is_autogroup(ag->tg))
-               goto out;
-
-       down_read(&ag->lock);
-       seq_printf(m, "/autogroup-%ld nice %d\n", ag->id, ag->nice);
-       up_read(&ag->lock);
-
-out:
-       autogroup_kref_put(ag);
-}
-#endif /* CONFIG_PROC_FS */
-
-#ifdef CONFIG_SCHED_DEBUG
-int autogroup_path(struct task_group *tg, char *buf, int buflen)
-{
-       if (!task_group_is_autogroup(tg))
-               return 0;
-
-       return snprintf(buf, buflen, "%s-%ld", "/autogroup", tg->autogroup->id);
-}
-#endif /* CONFIG_SCHED_DEBUG */
-
-#endif /* CONFIG_SCHED_AUTOGROUP */
diff --git a/kernel/sched.old/auto_group.h b/kernel/sched.old/auto_group.h
deleted file mode 100644 (file)
index 8bd0471..0000000
+++ /dev/null
@@ -1,64 +0,0 @@
-#ifdef CONFIG_SCHED_AUTOGROUP
-
-#include <linux/kref.h>
-#include <linux/rwsem.h>
-
-struct autogroup {
-       /*
-        * reference doesn't mean how many thread attach to this
-        * autogroup now. It just stands for the number of task
-        * could use this autogroup.
-        */
-       struct kref             kref;
-       struct task_group       *tg;
-       struct rw_semaphore     lock;
-       unsigned long           id;
-       int                     nice;
-};
-
-extern void autogroup_init(struct task_struct *init_task);
-extern void autogroup_free(struct task_group *tg);
-
-static inline bool task_group_is_autogroup(struct task_group *tg)
-{
-       return !!tg->autogroup;
-}
-
-extern bool task_wants_autogroup(struct task_struct *p, struct task_group *tg);
-
-static inline struct task_group *
-autogroup_task_group(struct task_struct *p, struct task_group *tg)
-{
-       int enabled = ACCESS_ONCE(sysctl_sched_autogroup_enabled);
-
-       if (enabled && task_wants_autogroup(p, tg))
-               return p->signal->autogroup->tg;
-
-       return tg;
-}
-
-extern int autogroup_path(struct task_group *tg, char *buf, int buflen);
-
-#else /* !CONFIG_SCHED_AUTOGROUP */
-
-static inline void autogroup_init(struct task_struct *init_task) {  }
-static inline void autogroup_free(struct task_group *tg) { }
-static inline bool task_group_is_autogroup(struct task_group *tg)
-{
-       return 0;
-}
-
-static inline struct task_group *
-autogroup_task_group(struct task_struct *p, struct task_group *tg)
-{
-       return tg;
-}
-
-#ifdef CONFIG_SCHED_DEBUG
-static inline int autogroup_path(struct task_group *tg, char *buf, int buflen)
-{
-       return 0;
-}
-#endif
-
-#endif /* CONFIG_SCHED_AUTOGROUP */
diff --git a/kernel/sched.old/clock.c b/kernel/sched.old/clock.c
deleted file mode 100644 (file)
index c3ae144..0000000
+++ /dev/null
@@ -1,376 +0,0 @@
-/*
- * sched_clock for unstable cpu clocks
- *
- *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
- *
- *  Updates and enhancements:
- *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
- *
- * Based on code by:
- *   Ingo Molnar <mingo@redhat.com>
- *   Guillaume Chazarain <guichaz@gmail.com>
- *
- *
- * What:
- *
- * cpu_clock(i) provides a fast (execution time) high resolution
- * clock with bounded drift between CPUs. The value of cpu_clock(i)
- * is monotonic for constant i. The timestamp returned is in nanoseconds.
- *
- * ######################### BIG FAT WARNING ##########################
- * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
- * # go backwards !!                                                  #
- * ####################################################################
- *
- * There is no strict promise about the base, although it tends to start
- * at 0 on boot (but people really shouldn't rely on that).
- *
- * cpu_clock(i)       -- can be used from any context, including NMI.
- * sched_clock_cpu(i) -- must be used with local IRQs disabled (implied by NMI)
- * local_clock()      -- is cpu_clock() on the current cpu.
- *
- * How:
- *
- * The implementation either uses sched_clock() when
- * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
- * sched_clock() is assumed to provide these properties (mostly it means
- * the architecture provides a globally synchronized highres time source).
- *
- * Otherwise it tries to create a semi stable clock from a mixture of other
- * clocks, including:
- *
- *  - GTOD (clock monotomic)
- *  - sched_clock()
- *  - explicit idle events
- *
- * We use GTOD as base and use sched_clock() deltas to improve resolution. The
- * deltas are filtered to provide monotonicity and keeping it within an
- * expected window.
- *
- * Furthermore, explicit sleep and wakeup hooks allow us to account for time
- * that is otherwise invisible (TSC gets stopped).
- *
- *
- * Notes:
- *
- * The !IRQ-safetly of sched_clock() and sched_clock_cpu() comes from things
- * like cpufreq interrupts that can change the base clock (TSC) multiplier
- * and cause funny jumps in time -- although the filtering provided by
- * sched_clock_cpu() should mitigate serious artifacts we cannot rely on it
- * in general since for !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK we fully rely on
- * sched_clock().
- */
-#include <linux/spinlock.h>
-#include <linux/hardirq.h>
-#include <linux/export.h>
-#include <linux/percpu.h>
-#include <linux/ktime.h>
-#include <linux/sched.h>
-
-/*
- * Scheduler clock - returns current time in nanosec units.
- * This is default implementation.
- * Architectures and sub-architectures can override this.
- */
-unsigned long long __attribute__((weak)) sched_clock(void)
-{
-       return (unsigned long long)(jiffies - INITIAL_JIFFIES)
-                                       * (NSEC_PER_SEC / HZ);
-}
-EXPORT_SYMBOL_GPL(sched_clock);
-
-__read_mostly int sched_clock_running;
-
-#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
-__read_mostly int sched_clock_stable;
-
-struct sched_clock_data {
-       u64                     tick_raw;
-       u64                     tick_gtod;
-       u64                     clock;
-};
-
-static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
-
-static inline struct sched_clock_data *this_scd(void)
-{
-       return &__get_cpu_var(sched_clock_data);
-}
-
-static inline struct sched_clock_data *cpu_sdc(int cpu)
-{
-       return &per_cpu(sched_clock_data, cpu);
-}
-
-void sched_clock_init(void)
-{
-       u64 ktime_now = ktime_to_ns(ktime_get());
-       int cpu;
-
-       for_each_possible_cpu(cpu) {
-               struct sched_clock_data *scd = cpu_sdc(cpu);
-
-               scd->tick_raw = 0;
-               scd->tick_gtod = ktime_now;
-               scd->clock = ktime_now;
-       }
-
-       sched_clock_running = 1;
-}
-
-/*
- * min, max except they take wrapping into account
- */
-
-static inline u64 wrap_min(u64 x, u64 y)
-{
-       return (s64)(x - y) < 0 ? x : y;
-}
-
-static inline u64 wrap_max(u64 x, u64 y)
-{
-       return (s64)(x - y) > 0 ? x : y;
-}
-
-/*
- * update the percpu scd from the raw @now value
- *
- *  - filter out backward motion
- *  - use the GTOD tick value to create a window to filter crazy TSC values
- */
-static u64 sched_clock_local(struct sched_clock_data *scd)
-{
-       u64 now, clock, old_clock, min_clock, max_clock;
-       s64 delta;
-
-again:
-       now = sched_clock();
-       delta = now - scd->tick_raw;
-       if (unlikely(delta < 0))
-               delta = 0;
-
-       old_clock = scd->clock;
-
-       /*
-        * scd->clock = clamp(scd->tick_gtod + delta,
-        *                    max(scd->tick_gtod, scd->clock),
-        *                    scd->tick_gtod + TICK_NSEC);
-        */
-
-       clock = scd->tick_gtod + delta;
-       min_clock = wrap_max(scd->tick_gtod, old_clock);
-       max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
-
-       clock = wrap_max(clock, min_clock);
-       clock = wrap_min(clock, max_clock);
-
-       if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
-               goto again;
-
-       return clock;
-}
-
-static u64 sched_clock_remote(struct sched_clock_data *scd)
-{
-       struct sched_clock_data *my_scd = this_scd();
-       u64 this_clock, remote_clock;
-       u64 *ptr, old_val, val;
-
-#if BITS_PER_LONG != 64
-again:
-       /*
-        * Careful here: The local and the remote clock values need to
-        * be read out atomic as we need to compare the values and
-        * then update either the local or the remote side. So the
-        * cmpxchg64 below only protects one readout.
-        *
-        * We must reread via sched_clock_local() in the retry case on
-        * 32bit as an NMI could use sched_clock_local() via the
-        * tracer and hit between the readout of
-        * the low32bit and the high 32bit portion.
-        */
-       this_clock = sched_clock_local(my_scd);
-       /*
-        * We must enforce atomic readout on 32bit, otherwise the
-        * update on the remote cpu can hit inbetween the readout of
-        * the low32bit and the high 32bit portion.
-        */
-       remote_clock = cmpxchg64(&scd->clock, 0, 0);
-#else
-       /*
-        * On 64bit the read of [my]scd->clock is atomic versus the
-        * update, so we can avoid the above 32bit dance.
-        */
-       sched_clock_local(my_scd);
-again:
-       this_clock = my_scd->clock;
-       remote_clock = scd->clock;
-#endif
-
-       /*
-        * Use the opportunity that we have both locks
-        * taken to couple the two clocks: we take the
-        * larger time as the latest time for both
-        * runqueues. (this creates monotonic movement)
-        */
-       if (likely((s64)(remote_clock - this_clock) < 0)) {
-               ptr = &scd->clock;
-               old_val = remote_clock;
-               val = this_clock;
-       } else {
-               /*
-                * Should be rare, but possible:
-                */
-               ptr = &my_scd->clock;
-               old_val = this_clock;
-               val = remote_clock;
-       }
-
-       if (cmpxchg64(ptr, old_val, val) != old_val)
-               goto again;
-
-       return val;
-}
-
-/*
- * Similar to cpu_clock(), but requires local IRQs to be disabled.
- *
- * See cpu_clock().
- */
-u64 sched_clock_cpu(int cpu)
-{
-       struct sched_clock_data *scd;
-       u64 clock;
-
-       WARN_ON_ONCE(!irqs_disabled());
-
-       if (sched_clock_stable)
-               return sched_clock();
-
-       if (unlikely(!sched_clock_running))
-               return 0ull;
-
-       scd = cpu_sdc(cpu);
-
-       if (cpu != smp_processor_id())
-               clock = sched_clock_remote(scd);
-       else
-               clock = sched_clock_local(scd);
-
-       return clock;
-}
-
-void sched_clock_tick(void)
-{
-       struct sched_clock_data *scd;
-       u64 now, now_gtod;
-
-       if (sched_clock_stable)
-               return;
-
-       if (unlikely(!sched_clock_running))
-               return;
-
-       WARN_ON_ONCE(!irqs_disabled());
-
-       scd = this_scd();
-       now_gtod = ktime_to_ns(ktime_get());
-       now = sched_clock();
-
-       scd->tick_raw = now;
-       scd->tick_gtod = now_gtod;
-       sched_clock_local(scd);
-}
-
-/*
- * We are going deep-idle (irqs are disabled):
- */
-void sched_clock_idle_sleep_event(void)
-{
-       sched_clock_cpu(smp_processor_id());
-}
-EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
-
-/*
- * We just idled delta nanoseconds (called with irqs disabled):
- */
-void sched_clock_idle_wakeup_event(u64 delta_ns)
-{
-       if (timekeeping_suspended)
-               return;
-
-       sched_clock_tick();
-       touch_softlockup_watchdog();
-}
-EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
-
-/*
- * As outlined at the top, provides a fast, high resolution, nanosecond
- * time source that is monotonic per cpu argument and has bounded drift
- * between cpus.
- *
- * ######################### BIG FAT WARNING ##########################
- * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
- * # go backwards !!                                                  #
- * ####################################################################
- */
-u64 cpu_clock(int cpu)
-{
-       u64 clock;
-       unsigned long flags;
-
-       local_irq_save(flags);
-       clock = sched_clock_cpu(cpu);
-       local_irq_restore(flags);
-
-       return clock;
-}
-
-/*
- * Similar to cpu_clock() for the current cpu. Time will only be observed
- * to be monotonic if care is taken to only compare timestampt taken on the
- * same CPU.
- *
- * See cpu_clock().
- */
-u64 local_clock(void)
-{
-       u64 clock;
-       unsigned long flags;
-
-       local_irq_save(flags);
-       clock = sched_clock_cpu(smp_processor_id());
-       local_irq_restore(flags);
-
-       return clock;
-}
-
-#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
-
-void sched_clock_init(void)
-{
-       sched_clock_running = 1;
-}
-
-u64 sched_clock_cpu(int cpu)
-{
-       if (unlikely(!sched_clock_running))
-               return 0;
-
-       return sched_clock();
-}
-
-u64 cpu_clock(int cpu)
-{
-       return sched_clock_cpu(cpu);
-}
-
-u64 local_clock(void)
-{
-       return sched_clock_cpu(0);
-}
-
-#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
-
-EXPORT_SYMBOL_GPL(cpu_clock);
-EXPORT_SYMBOL_GPL(local_clock);
diff --git a/kernel/sched.old/core.c b/kernel/sched.old/core.c
deleted file mode 100644 (file)
index 67d0465..0000000
+++ /dev/null
@@ -1,8264 +0,0 @@
-/*
- *  kernel/sched/core.c
- *
- *  Kernel scheduler and related syscalls
- *
- *  Copyright (C) 1991-2002  Linus Torvalds
- *
- *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
- *             make semaphores SMP safe
- *  1998-11-19 Implemented schedule_timeout() and related stuff
- *             by Andrea Arcangeli
- *  2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
- *             hybrid priority-list and round-robin design with
- *             an array-switch method of distributing timeslices
- *             and per-CPU runqueues.  Cleanups and useful suggestions
- *             by Davide Libenzi, preemptible kernel bits by Robert Love.
- *  2003-09-03 Interactivity tuning by Con Kolivas.
- *  2004-04-02 Scheduler domains code by Nick Piggin
- *  2007-04-15  Work begun on replacing all interactivity tuning with a
- *              fair scheduling design by Con Kolivas.
- *  2007-05-05  Load balancing (smp-nice) and other improvements
- *              by Peter Williams
- *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
- *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
- *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
- *              Thomas Gleixner, Mike Kravetz
- */
-
-#include <linux/mm.h>
-#include <linux/module.h>
-#include <linux/nmi.h>
-#include <linux/init.h>
-#include <linux/uaccess.h>
-#include <linux/highmem.h>
-#include <asm/mmu_context.h>
-#include <linux/interrupt.h>
-#include <linux/capability.h>
-#include <linux/completion.h>
-#include <linux/kernel_stat.h>
-#include <linux/debug_locks.h>
-#include <linux/perf_event.h>
-#include <linux/security.h>
-#include <linux/notifier.h>
-#include <linux/profile.h>
-#include <linux/freezer.h>
-#include <linux/vmalloc.h>
-#include <linux/blkdev.h>
-#include <linux/delay.h>
-#include <linux/pid_namespace.h>
-#include <linux/smp.h>
-#include <linux/threads.h>
-#include <linux/timer.h>
-#include <linux/rcupdate.h>
-#include <linux/cpu.h>
-#include <linux/cpuset.h>
-#include <linux/percpu.h>
-#include <linux/proc_fs.h>
-#include <linux/seq_file.h>
-#include <linux/sysctl.h>
-#include <linux/syscalls.h>
-#include <linux/times.h>
-#include <linux/tsacct_kern.h>
-#include <linux/kprobes.h>
-#include <linux/delayacct.h>
-#include <linux/unistd.h>
-#include <linux/pagemap.h>
-#include <linux/hrtimer.h>
-#include <linux/tick.h>
-#include <linux/debugfs.h>
-#include <linux/ctype.h>
-#include <linux/ftrace.h>
-#include <linux/slab.h>
-#include <linux/init_task.h>
-#include <linux/binfmts.h>
-#include <linux/context_tracking.h>
-
-#include <asm/switch_to.h>
-#include <asm/tlb.h>
-#include <asm/irq_regs.h>
-#include <asm/mutex.h>
-#ifdef CONFIG_PARAVIRT
-#include <asm/paravirt.h>
-#endif
-
-#include "sched.h"
-#include "../workqueue_internal.h"
-#include "../smpboot.h"
-
-#define CREATE_TRACE_POINTS
-#include <trace/events/sched.h>
-
-void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
-{
-       unsigned long delta;
-       ktime_t soft, hard, now;
-
-       for (;;) {
-               if (hrtimer_active(period_timer))
-                       break;
-
-               now = hrtimer_cb_get_time(period_timer);
-               hrtimer_forward(period_timer, now, period);
-
-               soft = hrtimer_get_softexpires(period_timer);
-               hard = hrtimer_get_expires(period_timer);
-               delta = ktime_to_ns(ktime_sub(hard, soft));
-               __hrtimer_start_range_ns(period_timer, soft, delta,
-                                        HRTIMER_MODE_ABS_PINNED, 0);
-       }
-}
-
-DEFINE_MUTEX(sched_domains_mutex);
-DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
-
-static void update_rq_clock_task(struct rq *rq, s64 delta);
-
-void update_rq_clock(struct rq *rq)
-{
-       s64 delta;
-
-       if (rq->skip_clock_update > 0)
-               return;
-
-       delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
-       rq->clock += delta;
-       update_rq_clock_task(rq, delta);
-}
-
-/*
- * Debugging: various feature bits
- */
-
-#define SCHED_FEAT(name, enabled)      \
-       (1UL << __SCHED_FEAT_##name) * enabled |
-
-const_debug unsigned int sysctl_sched_features =
-#include "features.h"
-       0;
-
-#undef SCHED_FEAT
-
-#ifdef CONFIG_SCHED_DEBUG
-#define SCHED_FEAT(name, enabled)      \
-       #name ,
-
-static const char * const sched_feat_names[] = {
-#include "features.h"
-};
-
-#undef SCHED_FEAT
-
-static int sched_feat_show(struct seq_file *m, void *v)
-{
-       int i;
-
-       for (i = 0; i < __SCHED_FEAT_NR; i++) {
-               if (!(sysctl_sched_features & (1UL << i)))
-                       seq_puts(m, "NO_");
-               seq_printf(m, "%s ", sched_feat_names[i]);
-       }
-       seq_puts(m, "\n");
-
-       return 0;
-}
-
-#ifdef HAVE_JUMP_LABEL
-
-#define jump_label_key__true  STATIC_KEY_INIT_TRUE
-#define jump_label_key__false STATIC_KEY_INIT_FALSE
-
-#define SCHED_FEAT(name, enabled)      \
-       jump_label_key__##enabled ,
-
-struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
-#include "features.h"
-};
-
-#undef SCHED_FEAT
-
-static void sched_feat_disable(int i)
-{
-       if (static_key_enabled(&sched_feat_keys[i]))
-               static_key_slow_dec(&sched_feat_keys[i]);
-}
-
-static void sched_feat_enable(int i)
-{
-       if (!static_key_enabled(&sched_feat_keys[i]))
-               static_key_slow_inc(&sched_feat_keys[i]);
-}
-#else
-static void sched_feat_disable(int i) { };
-static void sched_feat_enable(int i) { };
-#endif /* HAVE_JUMP_LABEL */
-
-static int sched_feat_set(char *cmp)
-{
-       int i;
-       int neg = 0;
-
-       if (strncmp(cmp, "NO_", 3) == 0) {
-               neg = 1;
-               cmp += 3;
-       }
-
-       for (i = 0; i < __SCHED_FEAT_NR; i++) {
-               if (strcmp(cmp, sched_feat_names[i]) == 0) {
-                       if (neg) {
-                               sysctl_sched_features &= ~(1UL << i);
-                               sched_feat_disable(i);
-                       } else {
-                               sysctl_sched_features |= (1UL << i);
-                               sched_feat_enable(i);
-                       }
-                       break;
-               }
-       }
-
-       return i;
-}
-
-static ssize_t
-sched_feat_write(struct file *filp, const char __user *ubuf,
-               size_t cnt, loff_t *ppos)
-{
-       char buf[64];
-       char *cmp;
-       int i;
-
-       if (cnt > 63)
-               cnt = 63;
-
-       if (copy_from_user(&buf, ubuf, cnt))
-               return -EFAULT;
-
-       buf[cnt] = 0;
-       cmp = strstrip(buf);
-
-       i = sched_feat_set(cmp);
-       if (i == __SCHED_FEAT_NR)
-               return -EINVAL;
-
-       *ppos += cnt;
-
-       return cnt;
-}
-
-static int sched_feat_open(struct inode *inode, struct file *filp)
-{
-       return single_open(filp, sched_feat_show, NULL);
-}
-
-static const struct file_operations sched_feat_fops = {
-       .open           = sched_feat_open,
-       .write          = sched_feat_write,
-       .read           = seq_read,
-       .llseek         = seq_lseek,
-       .release        = single_release,
-};
-
-static __init int sched_init_debug(void)
-{
-       debugfs_create_file("sched_features", 0644, NULL, NULL,
-                       &sched_feat_fops);
-
-       return 0;
-}
-late_initcall(sched_init_debug);
-#endif /* CONFIG_SCHED_DEBUG */
-
-/*
- * Number of tasks to iterate in a single balance run.
- * Limited because this is done with IRQs disabled.
- */
-const_debug unsigned int sysctl_sched_nr_migrate = 32;
-
-/*
- * period over which we average the RT time consumption, measured
- * in ms.
- *
- * default: 1s
- */
-const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
-
-/*
- * period over which we measure -rt task cpu usage in us.
- * default: 1s
- */
-unsigned int sysctl_sched_rt_period = 1000000;
-
-__read_mostly int scheduler_running;
-
-/*
- * part of the period that we allow rt tasks to run in us.
- * default: 0.95s
- */
-int sysctl_sched_rt_runtime = 950000;
-
-
-
-/*
- * __task_rq_lock - lock the rq @p resides on.
- */
-static inline struct rq *__task_rq_lock(struct task_struct *p)
-       __acquires(rq->lock)
-{
-       struct rq *rq;
-
-       lockdep_assert_held(&p->pi_lock);
-
-       for (;;) {
-               rq = task_rq(p);
-               raw_spin_lock(&rq->lock);
-               if (likely(rq == task_rq(p)))
-                       return rq;
-               raw_spin_unlock(&rq->lock);
-       }
-}
-
-/*
- * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
- */
-static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
-       __acquires(p->pi_lock)
-       __acquires(rq->lock)
-{
-       struct rq *rq;
-
-       for (;;) {
-               raw_spin_lock_irqsave(&p->pi_lock, *flags);
-               rq = task_rq(p);
-               raw_spin_lock(&rq->lock);
-               if (likely(rq == task_rq(p)))
-                       return rq;
-               raw_spin_unlock(&rq->lock);
-               raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
-       }
-}
-
-static void __task_rq_unlock(struct rq *rq)
-       __releases(rq->lock)
-{
-       raw_spin_unlock(&rq->lock);
-}
-
-static inline void
-task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
-       __releases(rq->lock)
-       __releases(p->pi_lock)
-{
-       raw_spin_unlock(&rq->lock);
-       raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
-}
-
-/*
- * this_rq_lock - lock this runqueue and disable interrupts.
- */
-static struct rq *this_rq_lock(void)
-       __acquires(rq->lock)
-{
-       struct rq *rq;
-
-       local_irq_disable();
-       rq = this_rq();
-       raw_spin_lock(&rq->lock);
-
-       return rq;
-}
-
-#ifdef CONFIG_SCHED_HRTICK
-/*
- * Use HR-timers to deliver accurate preemption points.
- *
- * Its all a bit involved since we cannot program an hrt while holding the
- * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
- * reschedule event.
- *
- * When we get rescheduled we reprogram the hrtick_timer outside of the
- * rq->lock.
- */
-
-static void hrtick_clear(struct rq *rq)
-{
-       if (hrtimer_active(&rq->hrtick_timer))
-               hrtimer_cancel(&rq->hrtick_timer);
-}
-
-/*
- * High-resolution timer tick.
- * Runs from hardirq context with interrupts disabled.
- */
-static enum hrtimer_restart hrtick(struct hrtimer *timer)
-{
-       struct rq *rq = container_of(timer, struct rq, hrtick_timer);
-
-       WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
-
-       raw_spin_lock(&rq->lock);
-       update_rq_clock(rq);
-       rq->curr->sched_class->task_tick(rq, rq->curr, 1);
-       raw_spin_unlock(&rq->lock);
-
-       return HRTIMER_NORESTART;
-}
-
-#ifdef CONFIG_SMP
-/*
- * called from hardirq (IPI) context
- */
-static void __hrtick_start(void *arg)
-{
-       struct rq *rq = arg;
-
-       raw_spin_lock(&rq->lock);
-       hrtimer_restart(&rq->hrtick_timer);
-       rq->hrtick_csd_pending = 0;
-       raw_spin_unlock(&rq->lock);
-}
-
-/*
- * Called to set the hrtick timer state.
- *
- * called with rq->lock held and irqs disabled
- */
-void hrtick_start(struct rq *rq, u64 delay)
-{
-       struct hrtimer *timer = &rq->hrtick_timer;
-       ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
-
-       hrtimer_set_expires(timer, time);
-
-       if (rq == this_rq()) {
-               hrtimer_restart(timer);
-       } else if (!rq->hrtick_csd_pending) {
-               __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
-               rq->hrtick_csd_pending = 1;
-       }
-}
-
-static int
-hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
-{
-       int cpu = (int)(long)hcpu;
-
-       switch (action) {
-       case CPU_UP_CANCELED:
-       case CPU_UP_CANCELED_FROZEN:
-       case CPU_DOWN_PREPARE:
-       case CPU_DOWN_PREPARE_FROZEN:
-       case CPU_DEAD:
-       case CPU_DEAD_FROZEN:
-               hrtick_clear(cpu_rq(cpu));
-               return NOTIFY_OK;
-       }
-
-       return NOTIFY_DONE;
-}
-
-static __init void init_hrtick(void)
-{
-       hotcpu_notifier(hotplug_hrtick, 0);
-}
-#else
-/*
- * Called to set the hrtick timer state.
- *
- * called with rq->lock held and irqs disabled
- */
-void hrtick_start(struct rq *rq, u64 delay)
-{
-       __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
-                       HRTIMER_MODE_REL_PINNED, 0);
-}
-
-static inline void init_hrtick(void)
-{
-}
-#endif /* CONFIG_SMP */
-
-static void init_rq_hrtick(struct rq *rq)
-{
-#ifdef CONFIG_SMP
-       rq->hrtick_csd_pending = 0;
-
-       rq->hrtick_csd.flags = 0;
-       rq->hrtick_csd.func = __hrtick_start;
-       rq->hrtick_csd.info = rq;
-#endif
-
-       hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
-       rq->hrtick_timer.function = hrtick;
-}
-#else  /* CONFIG_SCHED_HRTICK */
-static inline void hrtick_clear(struct rq *rq)
-{
-}
-
-static inline void init_rq_hrtick(struct rq *rq)
-{
-}
-
-static inline void init_hrtick(void)
-{
-}
-#endif /* CONFIG_SCHED_HRTICK */
-
-/*
- * resched_task - mark a task 'to be rescheduled now'.
- *
- * On UP this means the setting of the need_resched flag, on SMP it
- * might also involve a cross-CPU call to trigger the scheduler on
- * the target CPU.
- */
-#ifdef CONFIG_SMP
-
-#ifndef tsk_is_polling
-#define tsk_is_polling(t) 0
-#endif
-
-void resched_task(struct task_struct *p)
-{
-       int cpu;
-
-       assert_raw_spin_locked(&task_rq(p)->lock);
-
-       if (test_tsk_need_resched(p))
-               return;
-
-       set_tsk_need_resched(p);
-
-       cpu = task_cpu(p);
-       if (cpu == smp_processor_id())
-               return;
-
-       /* NEED_RESCHED must be visible before we test polling */
-       smp_mb();
-       if (!tsk_is_polling(p))
-               smp_send_reschedule(cpu);
-}
-
-void resched_cpu(int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-       unsigned long flags;
-
-       if (!raw_spin_trylock_irqsave(&rq->lock, flags))
-               return;
-       resched_task(cpu_curr(cpu));
-       raw_spin_unlock_irqrestore(&rq->lock, flags);
-}
-
-#ifdef CONFIG_NO_HZ
-/*
- * In the semi idle case, use the nearest busy cpu for migrating timers
- * from an idle cpu.  This is good for power-savings.
- *
- * We don't do similar optimization for completely idle system, as
- * selecting an idle cpu will add more delays to the timers than intended
- * (as that cpu's timer base may not be uptodate wrt jiffies etc).
- */
-int get_nohz_timer_target(void)
-{
-       int cpu = smp_processor_id();
-       int i;
-       struct sched_domain *sd;
-
-       rcu_read_lock();
-       for_each_domain(cpu, sd) {
-               for_each_cpu(i, sched_domain_span(sd)) {
-                       if (!idle_cpu(i)) {
-                               cpu = i;
-                               goto unlock;
-                       }
-               }
-       }
-unlock:
-       rcu_read_unlock();
-       return cpu;
-}
-/*
- * When add_timer_on() enqueues a timer into the timer wheel of an
- * idle CPU then this timer might expire before the next timer event
- * which is scheduled to wake up that CPU. In case of a completely
- * idle system the next event might even be infinite time into the
- * future. wake_up_idle_cpu() ensures that the CPU is woken up and
- * leaves the inner idle loop so the newly added timer is taken into
- * account when the CPU goes back to idle and evaluates the timer
- * wheel for the next timer event.
- */
-void wake_up_idle_cpu(int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-
-       if (cpu == smp_processor_id())
-               return;
-
-       /*
-        * This is safe, as this function is called with the timer
-        * wheel base lock of (cpu) held. When the CPU is on the way
-        * to idle and has not yet set rq->curr to idle then it will
-        * be serialized on the timer wheel base lock and take the new
-        * timer into account automatically.
-        */
-       if (rq->curr != rq->idle)
-               return;
-
-       /*
-        * We can set TIF_RESCHED on the idle task of the other CPU
-        * lockless. The worst case is that the other CPU runs the
-        * idle task through an additional NOOP schedule()
-        */
-       set_tsk_need_resched(rq->idle);
-
-       /* NEED_RESCHED must be visible before we test polling */
-       smp_mb();
-       if (!tsk_is_polling(rq->idle))
-               smp_send_reschedule(cpu);
-}
-
-static inline bool got_nohz_idle_kick(void)
-{
-       int cpu = smp_processor_id();
-       return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
-}
-
-#else /* CONFIG_NO_HZ */
-
-static inline bool got_nohz_idle_kick(void)
-{
-       return false;
-}
-
-#endif /* CONFIG_NO_HZ */
-
-void sched_avg_update(struct rq *rq)
-{
-       s64 period = sched_avg_period();
-
-       while ((s64)(rq->clock - rq->age_stamp) > period) {
-               /*
-                * Inline assembly required to prevent the compiler
-                * optimising this loop into a divmod call.
-                * See __iter_div_u64_rem() for another example of this.
-                */
-               asm("" : "+rm" (rq->age_stamp));
-               rq->age_stamp += period;
-               rq->rt_avg /= 2;
-       }
-}
-
-#else /* !CONFIG_SMP */
-void resched_task(struct task_struct *p)
-{
-       assert_raw_spin_locked(&task_rq(p)->lock);
-       set_tsk_need_resched(p);
-}
-#endif /* CONFIG_SMP */
-
-#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
-                       (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
-/*
- * Iterate task_group tree rooted at *from, calling @down when first entering a
- * node and @up when leaving it for the final time.
- *
- * Caller must hold rcu_lock or sufficient equivalent.
- */
-int walk_tg_tree_from(struct task_group *from,
-                            tg_visitor down, tg_visitor up, void *data)
-{
-       struct task_group *parent, *child;
-       int ret;
-
-       parent = from;
-
-down:
-       ret = (*down)(parent, data);
-       if (ret)
-               goto out;
-       list_for_each_entry_rcu(child, &parent->children, siblings) {
-               parent = child;
-               goto down;
-
-up:
-               continue;
-       }
-       ret = (*up)(parent, data);
-       if (ret || parent == from)
-               goto out;
-
-       child = parent;
-       parent = parent->parent;
-       if (parent)
-               goto up;
-out:
-       return ret;
-}
-
-int tg_nop(struct task_group *tg, void *data)
-{
-       return 0;
-}
-#endif
-
-static void set_load_weight(struct task_struct *p)
-{
-       int prio = p->static_prio - MAX_RT_PRIO;
-       struct load_weight *load = &p->se.load;
-
-       /*
-        * SCHED_IDLE tasks get minimal weight:
-        */
-       if (p->policy == SCHED_IDLE) {
-               load->weight = scale_load(WEIGHT_IDLEPRIO);
-               load->inv_weight = WMULT_IDLEPRIO;
-               return;
-       }
-
-       load->weight = scale_load(prio_to_weight[prio]);
-       load->inv_weight = prio_to_wmult[prio];
-}
-
-static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
-{
-       update_rq_clock(rq);
-       sched_info_queued(p);
-       p->sched_class->enqueue_task(rq, p, flags);
-}
-
-static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
-{
-       update_rq_clock(rq);
-       sched_info_dequeued(p);
-       p->sched_class->dequeue_task(rq, p, flags);
-}
-
-void activate_task(struct rq *rq, struct task_struct *p, int flags)
-{
-       if (task_contributes_to_load(p))
-               rq->nr_uninterruptible--;
-
-       enqueue_task(rq, p, flags);
-}
-
-void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
-{
-       if (task_contributes_to_load(p))
-               rq->nr_uninterruptible++;
-
-       dequeue_task(rq, p, flags);
-}
-
-static void update_rq_clock_task(struct rq *rq, s64 delta)
-{
-/*
- * In theory, the compile should just see 0 here, and optimize out the call
- * to sched_rt_avg_update. But I don't trust it...
- */
-#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
-       s64 steal = 0, irq_delta = 0;
-#endif
-#ifdef CONFIG_IRQ_TIME_ACCOUNTING
-       irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
-
-       /*
-        * Since irq_time is only updated on {soft,}irq_exit, we might run into
-        * this case when a previous update_rq_clock() happened inside a
-        * {soft,}irq region.
-        *
-        * When this happens, we stop ->clock_task and only update the
-        * prev_irq_time stamp to account for the part that fit, so that a next
-        * update will consume the rest. This ensures ->clock_task is
-        * monotonic.
-        *
-        * It does however cause some slight miss-attribution of {soft,}irq
-        * time, a more accurate solution would be to update the irq_time using
-        * the current rq->clock timestamp, except that would require using
-        * atomic ops.
-        */
-       if (irq_delta > delta)
-               irq_delta = delta;
-
-       rq->prev_irq_time += irq_delta;
-       delta -= irq_delta;
-#endif
-#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
-       if (static_key_false((&paravirt_steal_rq_enabled))) {
-               u64 st;
-
-               steal = paravirt_steal_clock(cpu_of(rq));
-               steal -= rq->prev_steal_time_rq;
-
-               if (unlikely(steal > delta))
-                       steal = delta;
-
-               st = steal_ticks(steal);
-               steal = st * TICK_NSEC;
-
-               rq->prev_steal_time_rq += steal;
-
-               delta -= steal;
-       }
-#endif
-
-       rq->clock_task += delta;
-
-#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
-       if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
-               sched_rt_avg_update(rq, irq_delta + steal);
-#endif
-}
-
-void sched_set_stop_task(int cpu, struct task_struct *stop)
-{
-       struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
-       struct task_struct *old_stop = cpu_rq(cpu)->stop;
-
-       if (stop) {
-               /*
-                * Make it appear like a SCHED_FIFO task, its something
-                * userspace knows about and won't get confused about.
-                *
-                * Also, it will make PI more or less work without too
-                * much confusion -- but then, stop work should not
-                * rely on PI working anyway.
-                */
-               sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
-
-               stop->sched_class = &stop_sched_class;
-       }
-
-       cpu_rq(cpu)->stop = stop;
-
-       if (old_stop) {
-               /*
-                * Reset it back to a normal scheduling class so that
-                * it can die in pieces.
-                */
-               old_stop->sched_class = &rt_sched_class;
-       }
-}
-
-/*
- * __normal_prio - return the priority that is based on the static prio
- */
-static inline int __normal_prio(struct task_struct *p)
-{
-       return p->static_prio;
-}
-
-/*
- * Calculate the expected normal priority: i.e. priority
- * without taking RT-inheritance into account. Might be
- * boosted by interactivity modifiers. Changes upon fork,
- * setprio syscalls, and whenever the interactivity
- * estimator recalculates.
- */
-static inline int normal_prio(struct task_struct *p)
-{
-       int prio;
-
-       if (task_has_rt_policy(p))
-               prio = MAX_RT_PRIO-1 - p->rt_priority;
-       else
-               prio = __normal_prio(p);
-       return prio;
-}
-
-/*
- * Calculate the current priority, i.e. the priority
- * taken into account by the scheduler. This value might
- * be boosted by RT tasks, or might be boosted by
- * interactivity modifiers. Will be RT if the task got
- * RT-boosted. If not then it returns p->normal_prio.
- */
-static int effective_prio(struct task_struct *p)
-{
-       p->normal_prio = normal_prio(p);
-       /*
-        * If we are RT tasks or we were boosted to RT priority,
-        * keep the priority unchanged. Otherwise, update priority
-        * to the normal priority:
-        */
-       if (!rt_prio(p->prio))
-               return p->normal_prio;
-       return p->prio;
-}
-
-/**
- * task_curr - is this task currently executing on a CPU?
- * @p: the task in question.
- */
-inline int task_curr(const struct task_struct *p)
-{
-       return cpu_curr(task_cpu(p)) == p;
-}
-
-static inline void check_class_changed(struct rq *rq, struct task_struct *p,
-                                      const struct sched_class *prev_class,
-                                      int oldprio)
-{
-       if (prev_class != p->sched_class) {
-               if (prev_class->switched_from)
-                       prev_class->switched_from(rq, p);
-               p->sched_class->switched_to(rq, p);
-       } else if (oldprio != p->prio)
-               p->sched_class->prio_changed(rq, p, oldprio);
-}
-
-void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
-{
-       const struct sched_class *class;
-
-       if (p->sched_class == rq->curr->sched_class) {
-               rq->curr->sched_class->check_preempt_curr(rq, p, flags);
-       } else {
-               for_each_class(class) {
-                       if (class == rq->curr->sched_class)
-                               break;
-                       if (class == p->sched_class) {
-                               resched_task(rq->curr);
-                               break;
-                       }
-               }
-       }
-
-       /*
-        * A queue event has occurred, and we're going to schedule.  In
-        * this case, we can save a useless back to back clock update.
-        */
-       if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
-               rq->skip_clock_update = 1;
-}
-
-static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
-
-void register_task_migration_notifier(struct notifier_block *n)
-{
-       atomic_notifier_chain_register(&task_migration_notifier, n);
-}
-
-#ifdef CONFIG_SMP
-void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
-{
-#ifdef CONFIG_SCHED_DEBUG
-       /*
-        * We should never call set_task_cpu() on a blocked task,
-        * ttwu() will sort out the placement.
-        */
-       WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
-                       !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
-
-#ifdef CONFIG_LOCKDEP
-       /*
-        * The caller should hold either p->pi_lock or rq->lock, when changing
-        * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
-        *
-        * sched_move_task() holds both and thus holding either pins the cgroup,
-        * see task_group().
-        *
-        * Furthermore, all task_rq users should acquire both locks, see
-        * task_rq_lock().
-        */
-       WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
-                                     lockdep_is_held(&task_rq(p)->lock)));
-#endif
-#endif
-
-       trace_sched_migrate_task(p, new_cpu);
-
-       if (task_cpu(p) != new_cpu) {
-               struct task_migration_notifier tmn;
-
-               if (p->sched_class->migrate_task_rq)
-                       p->sched_class->migrate_task_rq(p, new_cpu);
-               p->se.nr_migrations++;
-               perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
-
-               tmn.task = p;
-               tmn.from_cpu = task_cpu(p);
-               tmn.to_cpu = new_cpu;
-
-               atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
-       }
-
-       __set_task_cpu(p, new_cpu);
-}
-
-struct migration_arg {
-       struct task_struct *task;
-       int dest_cpu;
-};
-
-static int migration_cpu_stop(void *data);
-
-/*
- * wait_task_inactive - wait for a thread to unschedule.
- *
- * If @match_state is nonzero, it's the @p->state value just checked and
- * not expected to change.  If it changes, i.e. @p might have woken up,
- * then return zero.  When we succeed in waiting for @p to be off its CPU,
- * we return a positive number (its total switch count).  If a second call
- * a short while later returns the same number, the caller can be sure that
- * @p has remained unscheduled the whole time.
- *
- * The caller must ensure that the task *will* unschedule sometime soon,
- * else this function might spin for a *long* time. This function can't
- * be called with interrupts off, or it may introduce deadlock with
- * smp_call_function() if an IPI is sent by the same process we are
- * waiting to become inactive.
- */
-unsigned long wait_task_inactive(struct task_struct *p, long match_state)
-{
-       unsigned long flags;
-       int running, on_rq;
-       unsigned long ncsw;
-       struct rq *rq;
-
-       for (;;) {
-               /*
-                * We do the initial early heuristics without holding
-                * any task-queue locks at all. We'll only try to get
-                * the runqueue lock when things look like they will
-                * work out!
-                */
-               rq = task_rq(p);
-
-               /*
-                * If the task is actively running on another CPU
-                * still, just relax and busy-wait without holding
-                * any locks.
-                *
-                * NOTE! Since we don't hold any locks, it's not
-                * even sure that "rq" stays as the right runqueue!
-                * But we don't care, since "task_running()" will
-                * return false if the runqueue has changed and p
-                * is actually now running somewhere else!
-                */
-               while (task_running(rq, p)) {
-                       if (match_state && unlikely(p->state != match_state))
-                               return 0;
-                       cpu_relax();
-               }
-
-               /*
-                * Ok, time to look more closely! We need the rq
-                * lock now, to be *sure*. If we're wrong, we'll
-                * just go back and repeat.
-                */
-               rq = task_rq_lock(p, &flags);
-               trace_sched_wait_task(p);
-               running = task_running(rq, p);
-               on_rq = p->on_rq;
-               ncsw = 0;
-               if (!match_state || p->state == match_state)
-                       ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
-               task_rq_unlock(rq, p, &flags);
-
-               /*
-                * If it changed from the expected state, bail out now.
-                */
-               if (unlikely(!ncsw))
-                       break;
-
-               /*
-                * Was it really running after all now that we
-                * checked with the proper locks actually held?
-                *
-                * Oops. Go back and try again..
-                */
-               if (unlikely(running)) {
-                       cpu_relax();
-                       continue;
-               }
-
-               /*
-                * It's not enough that it's not actively running,
-                * it must be off the runqueue _entirely_, and not
-                * preempted!
-                *
-                * So if it was still runnable (but just not actively
-                * running right now), it's preempted, and we should
-                * yield - it could be a while.
-                */
-               if (unlikely(on_rq)) {
-                       ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
-
-                       set_current_state(TASK_UNINTERRUPTIBLE);
-                       schedule_hrtimeout(&to, HRTIMER_MODE_REL);
-                       continue;
-               }
-
-               /*
-                * Ahh, all good. It wasn't running, and it wasn't
-                * runnable, which means that it will never become
-                * running in the future either. We're all done!
-                */
-               break;
-       }
-
-       return ncsw;
-}
-
-/***
- * kick_process - kick a running thread to enter/exit the kernel
- * @p: the to-be-kicked thread
- *
- * Cause a process which is running on another CPU to enter
- * kernel-mode, without any delay. (to get signals handled.)
- *
- * NOTE: this function doesn't have to take the runqueue lock,
- * because all it wants to ensure is that the remote task enters
- * the kernel. If the IPI races and the task has been migrated
- * to another CPU then no harm is done and the purpose has been
- * achieved as well.
- */
-void kick_process(struct task_struct *p)
-{
-       int cpu;
-
-       preempt_disable();
-       cpu = task_cpu(p);
-       if ((cpu != smp_processor_id()) && task_curr(p))
-               smp_send_reschedule(cpu);
-       preempt_enable();
-}
-EXPORT_SYMBOL_GPL(kick_process);
-#endif /* CONFIG_SMP */
-
-#ifdef CONFIG_SMP
-/*
- * ->cpus_allowed is protected by both rq->lock and p->pi_lock
- */
-static int select_fallback_rq(int cpu, struct task_struct *p)
-{
-       int nid = cpu_to_node(cpu);
-       const struct cpumask *nodemask = NULL;
-       enum { cpuset, possible, fail } state = cpuset;
-       int dest_cpu;
-
-       /*
-        * If the node that the cpu is on has been offlined, cpu_to_node()
-        * will return -1. There is no cpu on the node, and we should
-        * select the cpu on the other node.
-        */
-       if (nid != -1) {
-               nodemask = cpumask_of_node(nid);
-
-               /* Look for allowed, online CPU in same node. */
-               for_each_cpu(dest_cpu, nodemask) {
-                       if (!cpu_online(dest_cpu))
-                               continue;
-                       if (!cpu_active(dest_cpu))
-                               continue;
-                       if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
-                               return dest_cpu;
-               }
-       }
-
-       for (;;) {
-               /* Any allowed, online CPU? */
-               for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
-                       if (!cpu_online(dest_cpu))
-                               continue;
-                       if (!cpu_active(dest_cpu))
-                               continue;
-                       goto out;
-               }
-
-               switch (state) {
-               case cpuset:
-                       /* No more Mr. Nice Guy. */
-                       cpuset_cpus_allowed_fallback(p);
-                       state = possible;
-                       break;
-
-               case possible:
-                       do_set_cpus_allowed(p, cpu_possible_mask);
-                       state = fail;
-                       break;
-
-               case fail:
-                       BUG();
-                       break;
-               }
-       }
-
-out:
-       if (state != cpuset) {
-               /*
-                * Don't tell them about moving exiting tasks or
-                * kernel threads (both mm NULL), since they never
-                * leave kernel.
-                */
-               if (p->mm && printk_ratelimit()) {
-                       printk_sched("process %d (%s) no longer affine to cpu%d\n",
-                                       task_pid_nr(p), p->comm, cpu);
-               }
-       }
-
-       return dest_cpu;
-}
-
-/*
- * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
- */
-static inline
-int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
-{
-       int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
-
-       /*
-        * In order not to call set_task_cpu() on a blocking task we need
-        * to rely on ttwu() to place the task on a valid ->cpus_allowed
-        * cpu.
-        *
-        * Since this is common to all placement strategies, this lives here.
-        *
-        * [ this allows ->select_task() to simply return task_cpu(p) and
-        *   not worry about this generic constraint ]
-        */
-       if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
-                    !cpu_online(cpu)))
-               cpu = select_fallback_rq(task_cpu(p), p);
-
-       return cpu;
-}
-
-static void update_avg(u64 *avg, u64 sample)
-{
-       s64 diff = sample - *avg;
-       *avg += diff >> 3;
-}
-#endif
-
-static void
-ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
-{
-#ifdef CONFIG_SCHEDSTATS
-       struct rq *rq = this_rq();
-
-#ifdef CONFIG_SMP
-       int this_cpu = smp_processor_id();
-
-       if (cpu == this_cpu) {
-               schedstat_inc(rq, ttwu_local);
-               schedstat_inc(p, se.statistics.nr_wakeups_local);
-       } else {
-               struct sched_domain *sd;
-
-               schedstat_inc(p, se.statistics.nr_wakeups_remote);
-               rcu_read_lock();
-               for_each_domain(this_cpu, sd) {
-                       if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
-                               schedstat_inc(sd, ttwu_wake_remote);
-                               break;
-                       }
-               }
-               rcu_read_unlock();
-       }
-
-       if (wake_flags & WF_MIGRATED)
-               schedstat_inc(p, se.statistics.nr_wakeups_migrate);
-
-#endif /* CONFIG_SMP */
-
-       schedstat_inc(rq, ttwu_count);
-       schedstat_inc(p, se.statistics.nr_wakeups);
-
-       if (wake_flags & WF_SYNC)
-               schedstat_inc(p, se.statistics.nr_wakeups_sync);
-
-#endif /* CONFIG_SCHEDSTATS */
-}
-
-static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
-{
-       activate_task(rq, p, en_flags);
-       p->on_rq = 1;
-
-       /* if a worker is waking up, notify workqueue */
-       if (p->flags & PF_WQ_WORKER)
-               wq_worker_waking_up(p, cpu_of(rq));
-}
-
-/*
- * Mark the task runnable and perform wakeup-preemption.
- */
-static void
-ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
-{
-       trace_sched_wakeup(p, true);
-       check_preempt_curr(rq, p, wake_flags);
-
-       p->state = TASK_RUNNING;
-#ifdef CONFIG_SMP
-       if (p->sched_class->task_woken)
-               p->sched_class->task_woken(rq, p);
-
-       if (rq->idle_stamp) {
-               u64 delta = rq->clock - rq->idle_stamp;
-               u64 max = 2*sysctl_sched_migration_cost;
-
-               if (delta > max)
-                       rq->avg_idle = max;
-               else
-                       update_avg(&rq->avg_idle, delta);
-               rq->idle_stamp = 0;
-       }
-#endif
-}
-
-static void
-ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
-{
-#ifdef CONFIG_SMP
-       if (p->sched_contributes_to_load)
-               rq->nr_uninterruptible--;
-#endif
-
-       ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
-       ttwu_do_wakeup(rq, p, wake_flags);
-}
-
-/*
- * Called in case the task @p isn't fully descheduled from its runqueue,
- * in this case we must do a remote wakeup. Its a 'light' wakeup though,
- * since all we need to do is flip p->state to TASK_RUNNING, since
- * the task is still ->on_rq.
- */
-static int ttwu_remote(struct task_struct *p, int wake_flags)
-{
-       struct rq *rq;
-       int ret = 0;
-
-       rq = __task_rq_lock(p);
-       if (p->on_rq) {
-               ttwu_do_wakeup(rq, p, wake_flags);
-               ret = 1;
-       }
-       __task_rq_unlock(rq);
-
-       return ret;
-}
-
-#ifdef CONFIG_SMP
-static void sched_ttwu_pending(void)
-{
-       struct rq *rq = this_rq();
-       struct llist_node *llist = llist_del_all(&rq->wake_list);
-       struct task_struct *p;
-
-       raw_spin_lock(&rq->lock);
-
-       while (llist) {
-               p = llist_entry(llist, struct task_struct, wake_entry);
-               llist = llist_next(llist);
-               ttwu_do_activate(rq, p, 0);
-       }
-
-       raw_spin_unlock(&rq->lock);
-}
-
-void scheduler_ipi(void)
-{
-       if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
-               return;
-
-       /*
-        * Not all reschedule IPI handlers call irq_enter/irq_exit, since
-        * traditionally all their work was done from the interrupt return
-        * path. Now that we actually do some work, we need to make sure
-        * we do call them.
-        *
-        * Some archs already do call them, luckily irq_enter/exit nest
-        * properly.
-        *
-        * Arguably we should visit all archs and update all handlers,
-        * however a fair share of IPIs are still resched only so this would
-        * somewhat pessimize the simple resched case.
-        */
-       irq_enter();
-       sched_ttwu_pending();
-
-       /*
-        * Check if someone kicked us for doing the nohz idle load balance.
-        */
-       if (unlikely(got_nohz_idle_kick() && !need_resched())) {
-               this_rq()->idle_balance = 1;
-               raise_softirq_irqoff(SCHED_SOFTIRQ);
-       }
-       irq_exit();
-}
-
-static void ttwu_queue_remote(struct task_struct *p, int cpu)
-{
-       if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
-               smp_send_reschedule(cpu);
-}
-
-bool cpus_share_cache(int this_cpu, int that_cpu)
-{
-       return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
-}
-#endif /* CONFIG_SMP */
-
-static void ttwu_queue(struct task_struct *p, int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-
-#if defined(CONFIG_SMP)
-       if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
-               sched_clock_cpu(cpu); /* sync clocks x-cpu */
-               ttwu_queue_remote(p, cpu);
-               return;
-       }
-#endif
-
-       raw_spin_lock(&rq->lock);
-       ttwu_do_activate(rq, p, 0);
-       raw_spin_unlock(&rq->lock);
-}
-
-/**
- * try_to_wake_up - wake up a thread
- * @p: the thread to be awakened
- * @state: the mask of task states that can be woken
- * @wake_flags: wake modifier flags (WF_*)
- *
- * Put it on the run-queue if it's not already there. The "current"
- * thread is always on the run-queue (except when the actual
- * re-schedule is in progress), and as such you're allowed to do
- * the simpler "current->state = TASK_RUNNING" to mark yourself
- * runnable without the overhead of this.
- *
- * Returns %true if @p was woken up, %false if it was already running
- * or @state didn't match @p's state.
- */
-static int
-try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
-{
-       unsigned long flags;
-       int cpu, success = 0;
-
-       smp_wmb();
-       raw_spin_lock_irqsave(&p->pi_lock, flags);
-       if (!(p->state & state))
-               goto out;
-
-       success = 1; /* we're going to change ->state */
-       cpu = task_cpu(p);
-
-       if (p->on_rq && ttwu_remote(p, wake_flags))
-               goto stat;
-
-#ifdef CONFIG_SMP
-       /*
-        * If the owning (remote) cpu is still in the middle of schedule() with
-        * this task as prev, wait until its done referencing the task.
-        */
-       while (p->on_cpu)
-               cpu_relax();
-       /*
-        * Pairs with the smp_wmb() in finish_lock_switch().
-        */
-       smp_rmb();
-
-       p->sched_contributes_to_load = !!task_contributes_to_load(p);
-       p->state = TASK_WAKING;
-
-       if (p->sched_class->task_waking)
-               p->sched_class->task_waking(p);
-
-       cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
-       if (task_cpu(p) != cpu) {
-               wake_flags |= WF_MIGRATED;
-               set_task_cpu(p, cpu);
-       }
-#endif /* CONFIG_SMP */
-
-       ttwu_queue(p, cpu);
-stat:
-       ttwu_stat(p, cpu, wake_flags);
-out:
-       raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-
-       return success;
-}
-
-/**
- * try_to_wake_up_local - try to wake up a local task with rq lock held
- * @p: the thread to be awakened
- *
- * Put @p on the run-queue if it's not already there. The caller must
- * ensure that this_rq() is locked, @p is bound to this_rq() and not
- * the current task.
- */
-static void try_to_wake_up_local(struct task_struct *p)
-{
-       struct rq *rq = task_rq(p);
-
-       if (WARN_ON_ONCE(rq != this_rq()) ||
-           WARN_ON_ONCE(p == current))
-               return;
-
-       lockdep_assert_held(&rq->lock);
-
-       if (!raw_spin_trylock(&p->pi_lock)) {
-               raw_spin_unlock(&rq->lock);
-               raw_spin_lock(&p->pi_lock);
-               raw_spin_lock(&rq->lock);
-       }
-
-       if (!(p->state & TASK_NORMAL))
-               goto out;
-
-       if (!p->on_rq)
-               ttwu_activate(rq, p, ENQUEUE_WAKEUP);
-
-       ttwu_do_wakeup(rq, p, 0);
-       ttwu_stat(p, smp_processor_id(), 0);
-out:
-       raw_spin_unlock(&p->pi_lock);
-}
-
-/**
- * wake_up_process - Wake up a specific process
- * @p: The process to be woken up.
- *
- * Attempt to wake up the nominated process and move it to the set of runnable
- * processes.  Returns 1 if the process was woken up, 0 if it was already
- * running.
- *
- * It may be assumed that this function implies a write memory barrier before
- * changing the task state if and only if any tasks are woken up.
- */
-int wake_up_process(struct task_struct *p)
-{
-       WARN_ON(task_is_stopped_or_traced(p));
-       return try_to_wake_up(p, TASK_NORMAL, 0);
-}
-EXPORT_SYMBOL(wake_up_process);
-
-int wake_up_state(struct task_struct *p, unsigned int state)
-{
-       return try_to_wake_up(p, state, 0);
-}
-
-/*
- * Perform scheduler related setup for a newly forked process p.
- * p is forked by current.
- *
- * __sched_fork() is basic setup used by init_idle() too:
- */
-static void __sched_fork(struct task_struct *p)
-{
-       p->on_rq                        = 0;
-
-       p->se.on_rq                     = 0;
-       p->se.exec_start                = 0;
-       p->se.sum_exec_runtime          = 0;
-       p->se.prev_sum_exec_runtime     = 0;
-       p->se.nr_migrations             = 0;
-       p->se.vruntime                  = 0;
-       INIT_LIST_HEAD(&p->se.group_node);
-
-/*
- * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
- * removed when useful for applications beyond shares distribution (e.g.
- * load-balance).
- */
-#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
-       p->se.avg.runnable_avg_period = 0;
-       p->se.avg.runnable_avg_sum = 0;
-#endif
-#ifdef CONFIG_SCHEDSTATS
-       memset(&p->se.statistics, 0, sizeof(p->se.statistics));
-#endif
-
-       INIT_LIST_HEAD(&p->rt.run_list);
-
-#ifdef CONFIG_PREEMPT_NOTIFIERS
-       INIT_HLIST_HEAD(&p->preempt_notifiers);
-#endif
-
-#ifdef CONFIG_NUMA_BALANCING
-       if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
-               p->mm->numa_next_scan = jiffies;
-               p->mm->numa_next_reset = jiffies;
-               p->mm->numa_scan_seq = 0;
-       }
-
-       p->node_stamp = 0ULL;
-       p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
-       p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
-       p->numa_scan_period = sysctl_numa_balancing_scan_delay;
-       p->numa_work.next = &p->numa_work;
-#endif /* CONFIG_NUMA_BALANCING */
-}
-
-#ifdef CONFIG_NUMA_BALANCING
-#ifdef CONFIG_SCHED_DEBUG
-void set_numabalancing_state(bool enabled)
-{
-       if (enabled)
-               sched_feat_set("NUMA");
-       else
-               sched_feat_set("NO_NUMA");
-}
-#else
-__read_mostly bool numabalancing_enabled;
-
-void set_numabalancing_state(bool enabled)
-{
-       numabalancing_enabled = enabled;
-}
-#endif /* CONFIG_SCHED_DEBUG */
-#endif /* CONFIG_NUMA_BALANCING */
-
-/*
- * fork()/clone()-time setup:
- */
-void sched_fork(struct task_struct *p)
-{
-       unsigned long flags;
-       int cpu = get_cpu();
-
-       __sched_fork(p);
-       /*
-        * We mark the process as running here. This guarantees that
-        * nobody will actually run it, and a signal or other external
-        * event cannot wake it up and insert it on the runqueue either.
-        */
-       p->state = TASK_RUNNING;
-
-       /*
-        * Make sure we do not leak PI boosting priority to the child.
-        */
-       p->prio = current->normal_prio;
-
-       /*
-        * Revert to default priority/policy on fork if requested.
-        */
-       if (unlikely(p->sched_reset_on_fork)) {
-               if (task_has_rt_policy(p)) {
-                       p->policy = SCHED_NORMAL;
-                       p->static_prio = NICE_TO_PRIO(0);
-                       p->rt_priority = 0;
-               } else if (PRIO_TO_NICE(p->static_prio) < 0)
-                       p->static_prio = NICE_TO_PRIO(0);
-
-               p->prio = p->normal_prio = __normal_prio(p);
-               set_load_weight(p);
-
-               /*
-                * We don't need the reset flag anymore after the fork. It has
-                * fulfilled its duty:
-                */
-               p->sched_reset_on_fork = 0;
-       }
-
-       if (!rt_prio(p->prio))
-               p->sched_class = &fair_sched_class;
-
-       if (p->sched_class->task_fork)
-               p->sched_class->task_fork(p);
-
-       /*
-        * The child is not yet in the pid-hash so no cgroup attach races,
-        * and the cgroup is pinned to this child due to cgroup_fork()
-        * is ran before sched_fork().
-        *
-        * Silence PROVE_RCU.
-        */
-       raw_spin_lock_irqsave(&p->pi_lock, flags);
-       set_task_cpu(p, cpu);
-       raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-
-#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
-       if (likely(sched_info_on()))
-               memset(&p->sched_info, 0, sizeof(p->sched_info));
-#endif
-#if defined(CONFIG_SMP)
-       p->on_cpu = 0;
-#endif
-#ifdef CONFIG_PREEMPT_COUNT
-       /* Want to start with kernel preemption disabled. */
-       task_thread_info(p)->preempt_count = 1;
-#endif
-#ifdef CONFIG_SMP
-       plist_node_init(&p->pushable_tasks, MAX_PRIO);
-#endif
-
-       put_cpu();
-}
-
-/*
- * wake_up_new_task - wake up a newly created task for the first time.
- *
- * This function will do some initial scheduler statistics housekeeping
- * that must be done for every newly created context, then puts the task
- * on the runqueue and wakes it.
- */
-void wake_up_new_task(struct task_struct *p)
-{
-       unsigned long flags;
-       struct rq *rq;
-
-       raw_spin_lock_irqsave(&p->pi_lock, flags);
-#ifdef CONFIG_SMP
-       /*
-        * Fork balancing, do it here and not earlier because:
-        *  - cpus_allowed can change in the fork path
-        *  - any previously selected cpu might disappear through hotplug
-        */
-       set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
-#endif
-
-       rq = __task_rq_lock(p);
-       activate_task(rq, p, 0);
-       p->on_rq = 1;
-       trace_sched_wakeup_new(p, true);
-       check_preempt_curr(rq, p, WF_FORK);
-#ifdef CONFIG_SMP
-       if (p->sched_class->task_woken)
-               p->sched_class->task_woken(rq, p);
-#endif
-       task_rq_unlock(rq, p, &flags);
-}
-
-#ifdef CONFIG_PREEMPT_NOTIFIERS
-
-/**
- * preempt_notifier_register - tell me when current is being preempted & rescheduled
- * @notifier: notifier struct to register
- */
-void preempt_notifier_register(struct preempt_notifier *notifier)
-{
-       hlist_add_head(&notifier->link, &current->preempt_notifiers);
-}
-EXPORT_SYMBOL_GPL(preempt_notifier_register);
-
-/**
- * preempt_notifier_unregister - no longer interested in preemption notifications
- * @notifier: notifier struct to unregister
- *
- * This is safe to call from within a preemption notifier.
- */
-void preempt_notifier_unregister(struct preempt_notifier *notifier)
-{
-       hlist_del(&notifier->link);
-}
-EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
-
-static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
-{
-       struct preempt_notifier *notifier;
-
-       hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
-               notifier->ops->sched_in(notifier, raw_smp_processor_id());
-}
-
-static void
-fire_sched_out_preempt_notifiers(struct task_struct *curr,
-                                struct task_struct *next)
-{
-       struct preempt_notifier *notifier;
-
-       hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
-               notifier->ops->sched_out(notifier, next);
-}
-
-#else /* !CONFIG_PREEMPT_NOTIFIERS */
-
-static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
-{
-}
-
-static void
-fire_sched_out_preempt_notifiers(struct task_struct *curr,
-                                struct task_struct *next)
-{
-}
-
-#endif /* CONFIG_PREEMPT_NOTIFIERS */
-
-/**
- * prepare_task_switch - prepare to switch tasks
- * @rq: the runqueue preparing to switch
- * @prev: the current task that is being switched out
- * @next: the task we are going to switch to.
- *
- * This is called with the rq lock held and interrupts off. It must
- * be paired with a subsequent finish_task_switch after the context
- * switch.
- *
- * prepare_task_switch sets up locking and calls architecture specific
- * hooks.
- */
-static inline void
-prepare_task_switch(struct rq *rq, struct task_struct *prev,
-                   struct task_struct *next)
-{
-       trace_sched_switch(prev, next);
-       sched_info_switch(prev, next);
-       perf_event_task_sched_out(prev, next);
-       fire_sched_out_preempt_notifiers(prev, next);
-       prepare_lock_switch(rq, next);
-       prepare_arch_switch(next);
-}
-
-/**
- * finish_task_switch - clean up after a task-switch
- * @rq: runqueue associated with task-switch
- * @prev: the thread we just switched away from.
- *
- * finish_task_switch must be called after the context switch, paired
- * with a prepare_task_switch call before the context switch.
- * finish_task_switch will reconcile locking set up by prepare_task_switch,
- * and do any other architecture-specific cleanup actions.
- *
- * Note that we may have delayed dropping an mm in context_switch(). If
- * so, we finish that here outside of the runqueue lock. (Doing it
- * with the lock held can cause deadlocks; see schedule() for
- * details.)
- */
-static void finish_task_switch(struct rq *rq, struct task_struct *prev)
-       __releases(rq->lock)
-{
-       struct mm_struct *mm = rq->prev_mm;
-       long prev_state;
-
-       rq->prev_mm = NULL;
-
-       /*
-        * A task struct has one reference for the use as "current".
-        * If a task dies, then it sets TASK_DEAD in tsk->state and calls
-        * schedule one last time. The schedule call will never return, and
-        * the scheduled task must drop that reference.
-        * The test for TASK_DEAD must occur while the runqueue locks are
-        * still held, otherwise prev could be scheduled on another cpu, die
-        * there before we look at prev->state, and then the reference would
-        * be dropped twice.
-        *              Manfred Spraul <manfred@colorfullife.com>
-        */
-       prev_state = prev->state;
-       vtime_task_switch(prev);
-       finish_arch_switch(prev);
-       perf_event_task_sched_in(prev, current);
-       finish_lock_switch(rq, prev);
-       finish_arch_post_lock_switch();
-
-       fire_sched_in_preempt_notifiers(current);
-       if (mm)
-               mmdrop(mm);
-       if (unlikely(prev_state == TASK_DEAD)) {
-               /*
-                * Remove function-return probe instances associated with this
-                * task and put them back on the free list.
-                */
-               kprobe_flush_task(prev);
-               put_task_struct(prev);
-       }
-}
-
-#ifdef CONFIG_SMP
-
-/* assumes rq->lock is held */
-static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
-{
-       if (prev->sched_class->pre_schedule)
-               prev->sched_class->pre_schedule(rq, prev);
-}
-
-/* rq->lock is NOT held, but preemption is disabled */
-static inline void post_schedule(struct rq *rq)
-{
-       if (rq->post_schedule) {
-               unsigned long flags;
-
-               raw_spin_lock_irqsave(&rq->lock, flags);
-               if (rq->curr->sched_class->post_schedule)
-                       rq->curr->sched_class->post_schedule(rq);
-               raw_spin_unlock_irqrestore(&rq->lock, flags);
-
-               rq->post_schedule = 0;
-       }
-}
-
-#else
-
-static inline void pre_schedule(struct rq *rq, struct task_struct *p)
-{
-}
-
-static inline void post_schedule(struct rq *rq)
-{
-}
-
-#endif
-
-/**
- * schedule_tail - first thing a freshly forked thread must call.
- * @prev: the thread we just switched away from.
- */
-asmlinkage void schedule_tail(struct task_struct *prev)
-       __releases(rq->lock)
-{
-       struct rq *rq = this_rq();
-
-       finish_task_switch(rq, prev);
-
-       /*
-        * FIXME: do we need to worry about rq being invalidated by the
-        * task_switch?
-        */
-       post_schedule(rq);
-
-#ifdef __ARCH_WANT_UNLOCKED_CTXSW
-       /* In this case, finish_task_switch does not reenable preemption */
-       preempt_enable();
-#endif
-       if (current->set_child_tid)
-               put_user(task_pid_vnr(current), current->set_child_tid);
-}
-
-/*
- * context_switch - switch to the new MM and the new
- * thread's register state.
- */
-static inline void
-context_switch(struct rq *rq, struct task_struct *prev,
-              struct task_struct *next)
-{
-       struct mm_struct *mm, *oldmm;
-
-       prepare_task_switch(rq, prev, next);
-
-       mm = next->mm;
-       oldmm = prev->active_mm;
-       /*
-        * For paravirt, this is coupled with an exit in switch_to to
-        * combine the page table reload and the switch backend into
-        * one hypercall.
-        */
-       arch_start_context_switch(prev);
-
-       if (!mm) {
-               next->active_mm = oldmm;
-               atomic_inc(&oldmm->mm_count);
-               enter_lazy_tlb(oldmm, next);
-       } else
-               switch_mm(oldmm, mm, next);
-
-       if (!prev->mm) {
-               prev->active_mm = NULL;
-               rq->prev_mm = oldmm;
-       }
-       /*
-        * Since the runqueue lock will be released by the next
-        * task (which is an invalid locking op but in the case
-        * of the scheduler it's an obvious special-case), so we
-        * do an early lockdep release here:
-        */
-#ifndef __ARCH_WANT_UNLOCKED_CTXSW
-       spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
-#endif
-
-       context_tracking_task_switch(prev, next);
-       /* Here we just switch the register state and the stack. */
-       switch_to(prev, next, prev);
-
-       barrier();
-       /*
-        * this_rq must be evaluated again because prev may have moved
-        * CPUs since it called schedule(), thus the 'rq' on its stack
-        * frame will be invalid.
-        */
-       finish_task_switch(this_rq(), prev);
-}
-
-/*
- * nr_running and nr_context_switches:
- *
- * externally visible scheduler statistics: current number of runnable
- * threads, total number of context switches performed since bootup.
- */
-unsigned long nr_running(void)
-{
-       unsigned long i, sum = 0;
-
-       for_each_online_cpu(i)
-               sum += cpu_rq(i)->nr_running;
-
-       return sum;
-}
-
-unsigned long long nr_context_switches(void)
-{
-       int i;
-       unsigned long long sum = 0;
-
-       for_each_possible_cpu(i)
-               sum += cpu_rq(i)->nr_switches;
-
-       return sum;
-}
-
-unsigned long nr_iowait(void)
-{
-       unsigned long i, sum = 0;
-
-       for_each_possible_cpu(i)
-               sum += atomic_read(&cpu_rq(i)->nr_iowait);
-
-       return sum;
-}
-
-unsigned long nr_iowait_cpu(int cpu)
-{
-       struct rq *this = cpu_rq(cpu);
-       return atomic_read(&this->nr_iowait);
-}
-
-unsigned long this_cpu_load(void)
-{
-       struct rq *this = this_rq();
-       return this->cpu_load[0];
-}
-
-
-/*
- * Global load-average calculations
- *
- * We take a distributed and async approach to calculating the global load-avg
- * in order to minimize overhead.
- *
- * The global load average is an exponentially decaying average of nr_running +
- * nr_uninterruptible.
- *
- * Once every LOAD_FREQ:
- *
- *   nr_active = 0;
- *   for_each_possible_cpu(cpu)
- *     nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
- *
- *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
- *
- * Due to a number of reasons the above turns in the mess below:
- *
- *  - for_each_possible_cpu() is prohibitively expensive on machines with
- *    serious number of cpus, therefore we need to take a distributed approach
- *    to calculating nr_active.
- *
- *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
- *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
- *
- *    So assuming nr_active := 0 when we start out -- true per definition, we
- *    can simply take per-cpu deltas and fold those into a global accumulate
- *    to obtain the same result. See calc_load_fold_active().
- *
- *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
- *    across the machine, we assume 10 ticks is sufficient time for every
- *    cpu to have completed this task.
- *
- *    This places an upper-bound on the IRQ-off latency of the machine. Then
- *    again, being late doesn't loose the delta, just wrecks the sample.
- *
- *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
- *    this would add another cross-cpu cacheline miss and atomic operation
- *    to the wakeup path. Instead we increment on whatever cpu the task ran
- *    when it went into uninterruptible state and decrement on whatever cpu
- *    did the wakeup. This means that only the sum of nr_uninterruptible over
- *    all cpus yields the correct result.
- *
- *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
- */
-
-/* Variables and functions for calc_load */
-static atomic_long_t calc_load_tasks;
-static unsigned long calc_load_update;
-unsigned long avenrun[3];
-EXPORT_SYMBOL(avenrun); /* should be removed */
-
-/**
- * get_avenrun - get the load average array
- * @loads:     pointer to dest load array
- * @offset:    offset to add
- * @shift:     shift count to shift the result left
- *
- * These values are estimates at best, so no need for locking.
- */
-void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
-{
-       loads[0] = (avenrun[0] + offset) << shift;
-       loads[1] = (avenrun[1] + offset) << shift;
-       loads[2] = (avenrun[2] + offset) << shift;
-}
-
-static long calc_load_fold_active(struct rq *this_rq)
-{
-       long nr_active, delta = 0;
-
-       nr_active = this_rq->nr_running;
-       nr_active += (long) this_rq->nr_uninterruptible;
-
-       if (nr_active != this_rq->calc_load_active) {
-               delta = nr_active - this_rq->calc_load_active;
-               this_rq->calc_load_active = nr_active;
-       }
-
-       return delta;
-}
-
-/*
- * a1 = a0 * e + a * (1 - e)
- */
-static unsigned long
-calc_load(unsigned long load, unsigned long exp, unsigned long active)
-{
-       load *= exp;
-       load += active * (FIXED_1 - exp);
-       load += 1UL << (FSHIFT - 1);
-       return load >> FSHIFT;
-}
-
-#ifdef CONFIG_NO_HZ
-/*
- * Handle NO_HZ for the global load-average.
- *
- * Since the above described distributed algorithm to compute the global
- * load-average relies on per-cpu sampling from the tick, it is affected by
- * NO_HZ.
- *
- * The basic idea is to fold the nr_active delta into a global idle-delta upon
- * entering NO_HZ state such that we can include this as an 'extra' cpu delta
- * when we read the global state.
- *
- * Obviously reality has to ruin such a delightfully simple scheme:
- *
- *  - When we go NO_HZ idle during the window, we can negate our sample
- *    contribution, causing under-accounting.
- *
- *    We avoid this by keeping two idle-delta counters and flipping them
- *    when the window starts, thus separating old and new NO_HZ load.
- *
- *    The only trick is the slight shift in index flip for read vs write.
- *
- *        0s            5s            10s           15s
- *          +10           +10           +10           +10
- *        |-|-----------|-|-----------|-|-----------|-|
- *    r:0 0 1           1 0           0 1           1 0
- *    w:0 1 1           0 0           1 1           0 0
- *
- *    This ensures we'll fold the old idle contribution in this window while
- *    accumlating the new one.
- *
- *  - When we wake up from NO_HZ idle during the window, we push up our
- *    contribution, since we effectively move our sample point to a known
- *    busy state.
- *
- *    This is solved by pushing the window forward, and thus skipping the
- *    sample, for this cpu (effectively using the idle-delta for this cpu which
- *    was in effect at the time the window opened). This also solves the issue
- *    of having to deal with a cpu having been in NOHZ idle for multiple
- *    LOAD_FREQ intervals.
- *
- * When making the ILB scale, we should try to pull this in as well.
- */
-static atomic_long_t calc_load_idle[2];
-static int calc_load_idx;
-
-static inline int calc_load_write_idx(void)
-{
-       int idx = calc_load_idx;
-
-       /*
-        * See calc_global_nohz(), if we observe the new index, we also
-        * need to observe the new update time.
-        */
-       smp_rmb();
-
-       /*
-        * If the folding window started, make sure we start writing in the
-        * next idle-delta.
-        */
-       if (!time_before(jiffies, calc_load_update))
-               idx++;
-
-       return idx & 1;
-}
-
-static inline int calc_load_read_idx(void)
-{
-       return calc_load_idx & 1;
-}
-
-void calc_load_enter_idle(void)
-{
-       struct rq *this_rq = this_rq();
-       long delta;
-
-       /*
-        * We're going into NOHZ mode, if there's any pending delta, fold it
-        * into the pending idle delta.
-        */
-       delta = calc_load_fold_active(this_rq);
-       if (delta) {
-               int idx = calc_load_write_idx();
-               atomic_long_add(delta, &calc_load_idle[idx]);
-       }
-}
-
-void calc_load_exit_idle(void)
-{
-       struct rq *this_rq = this_rq();
-
-       /*
-        * If we're still before the sample window, we're done.
-        */
-       if (time_before(jiffies, this_rq->calc_load_update))
-               return;
-
-       /*
-        * We woke inside or after the sample window, this means we're already
-        * accounted through the nohz accounting, so skip the entire deal and
-        * sync up for the next window.
-        */
-       this_rq->calc_load_update = calc_load_update;
-       if (time_before(jiffies, this_rq->calc_load_update + 10))
-               this_rq->calc_load_update += LOAD_FREQ;
-}
-
-static long calc_load_fold_idle(void)
-{
-       int idx = calc_load_read_idx();
-       long delta = 0;
-
-       if (atomic_long_read(&calc_load_idle[idx]))
-               delta = atomic_long_xchg(&calc_load_idle[idx], 0);
-
-       return delta;
-}
-
-/**
- * fixed_power_int - compute: x^n, in O(log n) time
- *
- * @x:         base of the power
- * @frac_bits: fractional bits of @x
- * @n:         power to raise @x to.
- *
- * By exploiting the relation between the definition of the natural power
- * function: x^n := x*x*...*x (x multiplied by itself for n times), and
- * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
- * (where: n_i \elem {0, 1}, the binary vector representing n),
- * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
- * of course trivially computable in O(log_2 n), the length of our binary
- * vector.
- */
-static unsigned long
-fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
-{
-       unsigned long result = 1UL << frac_bits;
-
-       if (n) for (;;) {
-               if (n & 1) {
-                       result *= x;
-                       result += 1UL << (frac_bits - 1);
-                       result >>= frac_bits;
-               }
-               n >>= 1;
-               if (!n)
-                       break;
-               x *= x;
-               x += 1UL << (frac_bits - 1);
-               x >>= frac_bits;
-       }
-
-       return result;
-}
-
-/*
- * a1 = a0 * e + a * (1 - e)
- *
- * a2 = a1 * e + a * (1 - e)
- *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
- *    = a0 * e^2 + a * (1 - e) * (1 + e)
- *
- * a3 = a2 * e + a * (1 - e)
- *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
- *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
- *
- *  ...
- *
- * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
- *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
- *    = a0 * e^n + a * (1 - e^n)
- *
- * [1] application of the geometric series:
- *
- *              n         1 - x^(n+1)
- *     S_n := \Sum x^i = -------------
- *             i=0          1 - x
- */
-static unsigned long
-calc_load_n(unsigned long load, unsigned long exp,
-           unsigned long active, unsigned int n)
-{
-
-       return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
-}
-
-/*
- * NO_HZ can leave us missing all per-cpu ticks calling
- * calc_load_account_active(), but since an idle CPU folds its delta into
- * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
- * in the pending idle delta if our idle period crossed a load cycle boundary.
- *
- * Once we've updated the global active value, we need to apply the exponential
- * weights adjusted to the number of cycles missed.
- */
-static void calc_global_nohz(void)
-{
-       long delta, active, n;
-
-       if (!time_before(jiffies, calc_load_update + 10)) {
-               /*
-                * Catch-up, fold however many we are behind still
-                */
-               delta = jiffies - calc_load_update - 10;
-               n = 1 + (delta / LOAD_FREQ);
-
-               active = atomic_long_read(&calc_load_tasks);
-               active = active > 0 ? active * FIXED_1 : 0;
-
-               avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
-               avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
-               avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
-
-               calc_load_update += n * LOAD_FREQ;
-       }
-
-       /*
-        * Flip the idle index...
-        *
-        * Make sure we first write the new time then flip the index, so that
-        * calc_load_write_idx() will see the new time when it reads the new
-        * index, this avoids a double flip messing things up.
-        */
-       smp_wmb();
-       calc_load_idx++;
-}
-#else /* !CONFIG_NO_HZ */
-
-static inline long calc_load_fold_idle(void) { return 0; }
-static inline void calc_global_nohz(void) { }
-
-#endif /* CONFIG_NO_HZ */
-
-/*
- * calc_load - update the avenrun load estimates 10 ticks after the
- * CPUs have updated calc_load_tasks.
- */
-void calc_global_load(unsigned long ticks)
-{
-       long active, delta;
-
-       if (time_before(jiffies, calc_load_update + 10))
-               return;
-
-       /*
-        * Fold the 'old' idle-delta to include all NO_HZ cpus.
-        */
-       delta = calc_load_fold_idle();
-       if (delta)
-               atomic_long_add(delta, &calc_load_tasks);
-
-       active = atomic_long_read(&calc_load_tasks);
-       active = active > 0 ? active * FIXED_1 : 0;
-
-       avenrun[0] = calc_load(avenrun[0], EXP_1, active);
-       avenrun[1] = calc_load(avenrun[1], EXP_5, active);
-       avenrun[2] = calc_load(avenrun[2], EXP_15, active);
-
-       calc_load_update += LOAD_FREQ;
-
-       /*
-        * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
-        */
-       calc_global_nohz();
-}
-
-/*
- * Called from update_cpu_load() to periodically update this CPU's
- * active count.
- */
-static void calc_load_account_active(struct rq *this_rq)
-{
-       long delta;
-
-       if (time_before(jiffies, this_rq->calc_load_update))
-               return;
-
-       delta  = calc_load_fold_active(this_rq);
-       if (delta)
-               atomic_long_add(delta, &calc_load_tasks);
-
-       this_rq->calc_load_update += LOAD_FREQ;
-}
-
-/*
- * End of global load-average stuff
- */
-
-/*
- * The exact cpuload at various idx values, calculated at every tick would be
- * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
- *
- * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
- * on nth tick when cpu may be busy, then we have:
- * load = ((2^idx - 1) / 2^idx)^(n-1) * load
- * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
- *
- * decay_load_missed() below does efficient calculation of
- * load = ((2^idx - 1) / 2^idx)^(n-1) * load
- * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
- *
- * The calculation is approximated on a 128 point scale.
- * degrade_zero_ticks is the number of ticks after which load at any
- * particular idx is approximated to be zero.
- * degrade_factor is a precomputed table, a row for each load idx.
- * Each column corresponds to degradation factor for a power of two ticks,
- * based on 128 point scale.
- * Example:
- * row 2, col 3 (=12) says that the degradation at load idx 2 after
- * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
- *
- * With this power of 2 load factors, we can degrade the load n times
- * by looking at 1 bits in n and doing as many mult/shift instead of
- * n mult/shifts needed by the exact degradation.
- */
-#define DEGRADE_SHIFT          7
-static const unsigned char
-               degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
-static const unsigned char
-               degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
-                                       {0, 0, 0, 0, 0, 0, 0, 0},
-                                       {64, 32, 8, 0, 0, 0, 0, 0},
-                                       {96, 72, 40, 12, 1, 0, 0},
-                                       {112, 98, 75, 43, 15, 1, 0},
-                                       {120, 112, 98, 76, 45, 16, 2} };
-
-/*
- * Update cpu_load for any missed ticks, due to tickless idle. The backlog
- * would be when CPU is idle and so we just decay the old load without
- * adding any new load.
- */
-static unsigned long
-decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
-{
-       int j = 0;
-
-       if (!missed_updates)
-               return load;
-
-       if (missed_updates >= degrade_zero_ticks[idx])
-               return 0;
-
-       if (idx == 1)
-               return load >> missed_updates;
-
-       while (missed_updates) {
-               if (missed_updates % 2)
-                       load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
-
-               missed_updates >>= 1;
-               j++;
-       }
-       return load;
-}
-
-/*
- * Update rq->cpu_load[] statistics. This function is usually called every
- * scheduler tick (TICK_NSEC). With tickless idle this will not be called
- * every tick. We fix it up based on jiffies.
- */
-static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
-                             unsigned long pending_updates)
-{
-       int i, scale;
-
-       this_rq->nr_load_updates++;
-
-       /* Update our load: */
-       this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
-       for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
-               unsigned long old_load, new_load;
-
-               /* scale is effectively 1 << i now, and >> i divides by scale */
-
-               old_load = this_rq->cpu_load[i];
-               old_load = decay_load_missed(old_load, pending_updates - 1, i);
-               new_load = this_load;
-               /*
-                * Round up the averaging division if load is increasing. This
-                * prevents us from getting stuck on 9 if the load is 10, for
-                * example.
-                */
-               if (new_load > old_load)
-                       new_load += scale - 1;
-
-               this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
-       }
-
-       sched_avg_update(this_rq);
-}
-
-#ifdef CONFIG_NO_HZ
-/*
- * There is no sane way to deal with nohz on smp when using jiffies because the
- * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
- * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
- *
- * Therefore we cannot use the delta approach from the regular tick since that
- * would seriously skew the load calculation. However we'll make do for those
- * updates happening while idle (nohz_idle_balance) or coming out of idle
- * (tick_nohz_idle_exit).
- *
- * This means we might still be one tick off for nohz periods.
- */
-
-/*
- * Called from nohz_idle_balance() to update the load ratings before doing the
- * idle balance.
- */
-void update_idle_cpu_load(struct rq *this_rq)
-{
-       unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
-       unsigned long load = this_rq->load.weight;
-       unsigned long pending_updates;
-
-       /*
-        * bail if there's load or we're actually up-to-date.
-        */
-       if (load || curr_jiffies == this_rq->last_load_update_tick)
-               return;
-
-       pending_updates = curr_jiffies - this_rq->last_load_update_tick;
-       this_rq->last_load_update_tick = curr_jiffies;
-
-       __update_cpu_load(this_rq, load, pending_updates);
-}
-
-/*
- * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
- */
-void update_cpu_load_nohz(void)
-{
-       struct rq *this_rq = this_rq();
-       unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
-       unsigned long pending_updates;
-
-       if (curr_jiffies == this_rq->last_load_update_tick)
-               return;
-
-       raw_spin_lock(&this_rq->lock);
-       pending_updates = curr_jiffies - this_rq->last_load_update_tick;
-       if (pending_updates) {
-               this_rq->last_load_update_tick = curr_jiffies;
-               /*
-                * We were idle, this means load 0, the current load might be
-                * !0 due to remote wakeups and the sort.
-                */
-               __update_cpu_load(this_rq, 0, pending_updates);
-       }
-       raw_spin_unlock(&this_rq->lock);
-}
-#endif /* CONFIG_NO_HZ */
-
-/*
- * Called from scheduler_tick()
- */
-static void update_cpu_load_active(struct rq *this_rq)
-{
-       /*
-        * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
-        */
-       this_rq->last_load_update_tick = jiffies;
-       __update_cpu_load(this_rq, this_rq->load.weight, 1);
-
-       calc_load_account_active(this_rq);
-}
-
-#ifdef CONFIG_SMP
-
-/*
- * sched_exec - execve() is a valuable balancing opportunity, because at
- * this point the task has the smallest effective memory and cache footprint.
- */
-void sched_exec(void)
-{
-       struct task_struct *p = current;
-       unsigned long flags;
-       int dest_cpu;
-
-       raw_spin_lock_irqsave(&p->pi_lock, flags);
-       dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
-       if (dest_cpu == smp_processor_id())
-               goto unlock;
-
-       if (likely(cpu_active(dest_cpu))) {
-               struct migration_arg arg = { p, dest_cpu };
-
-               raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-               stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
-               return;
-       }
-unlock:
-       raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-}
-
-#endif
-
-DEFINE_PER_CPU(struct kernel_stat, kstat);
-DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
-
-EXPORT_PER_CPU_SYMBOL(kstat);
-EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
-
-/*
- * Return any ns on the sched_clock that have not yet been accounted in
- * @p in case that task is currently running.
- *
- * Called with task_rq_lock() held on @rq.
- */
-static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
-{
-       u64 ns = 0;
-
-       if (task_current(rq, p)) {
-               update_rq_clock(rq);
-               ns = rq->clock_task - p->se.exec_start;
-               if ((s64)ns < 0)
-                       ns = 0;
-       }
-
-       return ns;
-}
-
-unsigned long long task_delta_exec(struct task_struct *p)
-{
-       unsigned long flags;
-       struct rq *rq;
-       u64 ns = 0;
-
-       rq = task_rq_lock(p, &flags);
-       ns = do_task_delta_exec(p, rq);
-       task_rq_unlock(rq, p, &flags);
-
-       return ns;
-}
-
-/*
- * Return accounted runtime for the task.
- * In case the task is currently running, return the runtime plus current's
- * pending runtime that have not been accounted yet.
- */
-unsigned long long task_sched_runtime(struct task_struct *p)
-{
-       unsigned long flags;
-       struct rq *rq;
-       u64 ns = 0;
-
-       rq = task_rq_lock(p, &flags);
-       ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
-       task_rq_unlock(rq, p, &flags);
-
-       return ns;
-}
-
-/*
- * This function gets called by the timer code, with HZ frequency.
- * We call it with interrupts disabled.
- */
-void scheduler_tick(void)
-{
-       int cpu = smp_processor_id();
-       struct rq *rq = cpu_rq(cpu);
-       struct task_struct *curr = rq->curr;
-
-       sched_clock_tick();
-
-       raw_spin_lock(&rq->lock);
-       update_rq_clock(rq);
-       update_cpu_load_active(rq);
-       curr->sched_class->task_tick(rq, curr, 0);
-       raw_spin_unlock(&rq->lock);
-
-       perf_event_task_tick();
-
-#ifdef CONFIG_SMP
-       rq->idle_balance = idle_cpu(cpu);
-       trigger_load_balance(rq, cpu);
-#endif
-}
-
-notrace unsigned long get_parent_ip(unsigned long addr)
-{
-       if (in_lock_functions(addr)) {
-               addr = CALLER_ADDR2;
-               if (in_lock_functions(addr))
-                       addr = CALLER_ADDR3;
-       }
-       return addr;
-}
-
-#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
-                               defined(CONFIG_PREEMPT_TRACER))
-
-void __kprobes add_preempt_count(int val)
-{
-#ifdef CONFIG_DEBUG_PREEMPT
-       /*
-        * Underflow?
-        */
-       if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
-               return;
-#endif
-       preempt_count() += val;
-#ifdef CONFIG_DEBUG_PREEMPT
-       /*
-        * Spinlock count overflowing soon?
-        */
-       DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
-                               PREEMPT_MASK - 10);
-#endif
-       if (preempt_count() == val)
-               trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
-}
-EXPORT_SYMBOL(add_preempt_count);
-
-void __kprobes sub_preempt_count(int val)
-{
-#ifdef CONFIG_DEBUG_PREEMPT
-       /*
-        * Underflow?
-        */
-       if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
-               return;
-       /*
-        * Is the spinlock portion underflowing?
-        */
-       if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
-                       !(preempt_count() & PREEMPT_MASK)))
-               return;
-#endif
-
-       if (preempt_count() == val)
-               trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
-       preempt_count() -= val;
-}
-EXPORT_SYMBOL(sub_preempt_count);
-
-#endif
-
-/*
- * Print scheduling while atomic bug:
- */
-static noinline void __schedule_bug(struct task_struct *prev)
-{
-       if (oops_in_progress)
-               return;
-
-       printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
-               prev->comm, prev->pid, preempt_count());
-
-       debug_show_held_locks(prev);
-       print_modules();
-       if (irqs_disabled())
-               print_irqtrace_events(prev);
-       dump_stack();
-       add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
-}
-
-/*
- * Various schedule()-time debugging checks and statistics:
- */
-static inline void schedule_debug(struct task_struct *prev)
-{
-       /*
-        * Test if we are atomic. Since do_exit() needs to call into
-        * schedule() atomically, we ignore that path for now.
-        * Otherwise, whine if we are scheduling when we should not be.
-        */
-       if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
-               __schedule_bug(prev);
-       rcu_sleep_check();
-
-       profile_hit(SCHED_PROFILING, __builtin_return_address(0));
-
-       schedstat_inc(this_rq(), sched_count);
-}
-
-static void put_prev_task(struct rq *rq, struct task_struct *prev)
-{
-       if (prev->on_rq || rq->skip_clock_update < 0)
-               update_rq_clock(rq);
-       prev->sched_class->put_prev_task(rq, prev);
-}
-
-/*
- * Pick up the highest-prio task:
- */
-static inline struct task_struct *
-pick_next_task(struct rq *rq)
-{
-       const struct sched_class *class;
-       struct task_struct *p;
-
-       /*
-        * Optimization: we know that if all tasks are in
-        * the fair class we can call that function directly:
-        */
-       if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
-               p = fair_sched_class.pick_next_task(rq);
-               if (likely(p))
-                       return p;
-       }
-
-       for_each_class(class) {
-               p = class->pick_next_task(rq);
-               if (p)
-                       return p;
-       }
-
-       BUG(); /* the idle class will always have a runnable task */
-}
-
-/*
- * __schedule() is the main scheduler function.
- *
- * The main means of driving the scheduler and thus entering this function are:
- *
- *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
- *
- *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
- *      paths. For example, see arch/x86/entry_64.S.
- *
- *      To drive preemption between tasks, the scheduler sets the flag in timer
- *      interrupt handler scheduler_tick().
- *
- *   3. Wakeups don't really cause entry into schedule(). They add a
- *      task to the run-queue and that's it.
- *
- *      Now, if the new task added to the run-queue preempts the current
- *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
- *      called on the nearest possible occasion:
- *
- *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
- *
- *         - in syscall or exception context, at the next outmost
- *           preempt_enable(). (this might be as soon as the wake_up()'s
- *           spin_unlock()!)
- *
- *         - in IRQ context, return from interrupt-handler to
- *           preemptible context
- *
- *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
- *         then at the next:
- *
- *          - cond_resched() call
- *          - explicit schedule() call
- *          - return from syscall or exception to user-space
- *          - return from interrupt-handler to user-space
- */
-static void __sched __schedule(void)
-{
-       struct task_struct *prev, *next;
-       unsigned long *switch_count;
-       struct rq *rq;
-       int cpu;
-
-need_resched:
-       preempt_disable();
-       cpu = smp_processor_id();
-       rq = cpu_rq(cpu);
-       rcu_note_context_switch(cpu);
-       prev = rq->curr;
-
-       schedule_debug(prev);
-
-       if (sched_feat(HRTICK))
-               hrtick_clear(rq);
-
-       raw_spin_lock_irq(&rq->lock);
-
-       switch_count = &prev->nivcsw;
-       if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
-               if (unlikely(signal_pending_state(prev->state, prev))) {
-                       prev->state = TASK_RUNNING;
-               } else {
-                       deactivate_task(rq, prev, DEQUEUE_SLEEP);
-                       prev->on_rq = 0;
-
-                       /*
-                        * If a worker went to sleep, notify and ask workqueue
-                        * whether it wants to wake up a task to maintain
-                        * concurrency.
-                        */
-                       if (prev->flags & PF_WQ_WORKER) {
-                               struct task_struct *to_wakeup;
-
-                               to_wakeup = wq_worker_sleeping(prev, cpu);
-                               if (to_wakeup)
-                                       try_to_wake_up_local(to_wakeup);
-                       }
-               }
-               switch_count = &prev->nvcsw;
-       }
-
-       pre_schedule(rq, prev);
-
-       if (unlikely(!rq->nr_running))
-               idle_balance(cpu, rq);
-
-       put_prev_task(rq, prev);
-       next = pick_next_task(rq);
-       clear_tsk_need_resched(prev);
-       rq->skip_clock_update = 0;
-
-       if (likely(prev != next)) {
-               rq->nr_switches++;
-               rq->curr = next;
-               ++*switch_count;
-
-               context_switch(rq, prev, next); /* unlocks the rq */
-               /*
-                * The context switch have flipped the stack from under us
-                * and restored the local variables which were saved when
-                * this task called schedule() in the past. prev == current
-                * is still correct, but it can be moved to another cpu/rq.
-                */
-               cpu = smp_processor_id();
-               rq = cpu_rq(cpu);
-       } else
-               raw_spin_unlock_irq(&rq->lock);
-
-       post_schedule(rq);
-
-       sched_preempt_enable_no_resched();
-       if (need_resched())
-               goto need_resched;
-}
-
-static inline void sched_submit_work(struct task_struct *tsk)
-{
-       if (!tsk->state || tsk_is_pi_blocked(tsk))
-               return;
-       /*
-        * If we are going to sleep and we have plugged IO queued,
-        * make sure to submit it to avoid deadlocks.
-        */
-       if (blk_needs_flush_plug(tsk))
-               blk_schedule_flush_plug(tsk);
-}
-
-asmlinkage void __sched schedule(void)
-{
-       struct task_struct *tsk = current;
-
-       sched_submit_work(tsk);
-       __schedule();
-}
-EXPORT_SYMBOL(schedule);
-
-#ifdef CONFIG_CONTEXT_TRACKING
-asmlinkage void __sched schedule_user(void)
-{
-       /*
-        * If we come here after a random call to set_need_resched(),
-        * or we have been woken up remotely but the IPI has not yet arrived,
-        * we haven't yet exited the RCU idle mode. Do it here manually until
-        * we find a better solution.
-        */
-       user_exit();
-       schedule();
-       user_enter();
-}
-#endif
-
-/**
- * schedule_preempt_disabled - called with preemption disabled
- *
- * Returns with preemption disabled. Note: preempt_count must be 1
- */
-void __sched schedule_preempt_disabled(void)
-{
-       sched_preempt_enable_no_resched();
-       schedule();
-       preempt_disable();
-}
-
-#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
-
-static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
-{
-       if (lock->owner != owner)
-               return false;
-
-       /*
-        * Ensure we emit the owner->on_cpu, dereference _after_ checking
-        * lock->owner still matches owner, if that fails, owner might
-        * point to free()d memory, if it still matches, the rcu_read_lock()
-        * ensures the memory stays valid.
-        */
-       barrier();
-
-       return owner->on_cpu;
-}
-
-/*
- * Look out! "owner" is an entirely speculative pointer
- * access and not reliable.
- */
-int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
-{
-       if (!sched_feat(OWNER_SPIN))
-               return 0;
-
-       rcu_read_lock();
-       while (owner_running(lock, owner)) {
-               if (need_resched())
-                       break;
-
-               arch_mutex_cpu_relax();
-       }
-       rcu_read_unlock();
-
-       /*
-        * We break out the loop above on need_resched() and when the
-        * owner changed, which is a sign for heavy contention. Return
-        * success only when lock->owner is NULL.
-        */
-       return lock->owner == NULL;
-}
-#endif
-
-#ifdef CONFIG_PREEMPT
-/*
- * this is the entry point to schedule() from in-kernel preemption
- * off of preempt_enable. Kernel preemptions off return from interrupt
- * occur there and call schedule directly.
- */
-asmlinkage void __sched notrace preempt_schedule(void)
-{
-       struct thread_info *ti = current_thread_info();
-
-       /*
-        * If there is a non-zero preempt_count or interrupts are disabled,
-        * we do not want to preempt the current task. Just return..
-        */
-       if (likely(ti->preempt_count || irqs_disabled()))
-               return;
-
-       do {
-               add_preempt_count_notrace(PREEMPT_ACTIVE);
-               __schedule();
-               sub_preempt_count_notrace(PREEMPT_ACTIVE);
-
-               /*
-                * Check again in case we missed a preemption opportunity
-                * between schedule and now.
-                */
-               barrier();
-       } while (need_resched());
-}
-EXPORT_SYMBOL(preempt_schedule);
-
-/*
- * this is the entry point to schedule() from kernel preemption
- * off of irq context.
- * Note, that this is called and return with irqs disabled. This will
- * protect us against recursive calling from irq.
- */
-asmlinkage void __sched preempt_schedule_irq(void)
-{
-       struct thread_info *ti = current_thread_info();
-
-       /* Catch callers which need to be fixed */
-       BUG_ON(ti->preempt_count || !irqs_disabled());
-
-       user_exit();
-       do {
-               add_preempt_count(PREEMPT_ACTIVE);
-               local_irq_enable();
-               __schedule();
-               local_irq_disable();
-               sub_preempt_count(PREEMPT_ACTIVE);
-
-               /*
-                * Check again in case we missed a preemption opportunity
-                * between schedule and now.
-                */
-               barrier();
-       } while (need_resched());
-}
-
-#endif /* CONFIG_PREEMPT */
-
-int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
-                         void *key)
-{
-       return try_to_wake_up(curr->private, mode, wake_flags);
-}
-EXPORT_SYMBOL(default_wake_function);
-
-/*
- * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
- * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
- * number) then we wake all the non-exclusive tasks and one exclusive task.
- *
- * There are circumstances in which we can try to wake a task which has already
- * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
- * zero in this (rare) case, and we handle it by continuing to scan the queue.
- */
-static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
-                       int nr_exclusive, int wake_flags, void *key)
-{
-       wait_queue_t *curr, *next;
-
-       list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
-               unsigned flags = curr->flags;
-
-               if (curr->func(curr, mode, wake_flags, key) &&
-                               (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
-                       break;
-       }
-}
-
-/**
- * __wake_up - wake up threads blocked on a waitqueue.
- * @q: the waitqueue
- * @mode: which threads
- * @nr_exclusive: how many wake-one or wake-many threads to wake up
- * @key: is directly passed to the wakeup function
- *
- * It may be assumed that this function implies a write memory barrier before
- * changing the task state if and only if any tasks are woken up.
- */
-void __wake_up(wait_queue_head_t *q, unsigned int mode,
-                       int nr_exclusive, void *key)
-{
-       unsigned long flags;
-
-       spin_lock_irqsave(&q->lock, flags);
-       __wake_up_common(q, mode, nr_exclusive, 0, key);
-       spin_unlock_irqrestore(&q->lock, flags);
-}
-EXPORT_SYMBOL(__wake_up);
-
-/*
- * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
- */
-void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
-{
-       __wake_up_common(q, mode, nr, 0, NULL);
-}
-EXPORT_SYMBOL_GPL(__wake_up_locked);
-
-void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
-{
-       __wake_up_common(q, mode, 1, 0, key);
-}
-EXPORT_SYMBOL_GPL(__wake_up_locked_key);
-
-/**
- * __wake_up_sync_key - wake up threads blocked on a waitqueue.
- * @q: the waitqueue
- * @mode: which threads
- * @nr_exclusive: how many wake-one or wake-many threads to wake up
- * @key: opaque value to be passed to wakeup targets
- *
- * The sync wakeup differs that the waker knows that it will schedule
- * away soon, so while the target thread will be woken up, it will not
- * be migrated to another CPU - ie. the two threads are 'synchronized'
- * with each other. This can prevent needless bouncing between CPUs.
- *
- * On UP it can prevent extra preemption.
- *
- * It may be assumed that this function implies a write memory barrier before
- * changing the task state if and only if any tasks are woken up.
- */
-void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
-                       int nr_exclusive, void *key)
-{
-       unsigned long flags;
-       int wake_flags = WF_SYNC;
-
-       if (unlikely(!q))
-               return;
-
-       if (unlikely(!nr_exclusive))
-               wake_flags = 0;
-
-       spin_lock_irqsave(&q->lock, flags);
-       __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
-       spin_unlock_irqrestore(&q->lock, flags);
-}
-EXPORT_SYMBOL_GPL(__wake_up_sync_key);
-
-/*
- * __wake_up_sync - see __wake_up_sync_key()
- */
-void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
-{
-       __wake_up_sync_key(q, mode, nr_exclusive, NULL);
-}
-EXPORT_SYMBOL_GPL(__wake_up_sync);     /* For internal use only */
-
-/**
- * complete: - signals a single thread waiting on this completion
- * @x:  holds the state of this particular completion
- *
- * This will wake up a single thread waiting on this completion. Threads will be
- * awakened in the same order in which they were queued.
- *
- * See also complete_all(), wait_for_completion() and related routines.
- *
- * It may be assumed that this function implies a write memory barrier before
- * changing the task state if and only if any tasks are woken up.
- */
-void complete(struct completion *x)
-{
-       unsigned long flags;
-
-       spin_lock_irqsave(&x->wait.lock, flags);
-       x->done++;
-       __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
-       spin_unlock_irqrestore(&x->wait.lock, flags);
-}
-EXPORT_SYMBOL(complete);
-
-/**
- * complete_all: - signals all threads waiting on this completion
- * @x:  holds the state of this particular completion
- *
- * This will wake up all threads waiting on this particular completion event.
- *
- * It may be assumed that this function implies a write memory barrier before
- * changing the task state if and only if any tasks are woken up.
- */
-void complete_all(struct completion *x)
-{
-       unsigned long flags;
-
-       spin_lock_irqsave(&x->wait.lock, flags);
-       x->done += UINT_MAX/2;
-       __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
-       spin_unlock_irqrestore(&x->wait.lock, flags);
-}
-EXPORT_SYMBOL(complete_all);
-
-static inline long __sched
-do_wait_for_common(struct completion *x,
-                  long (*action)(long), long timeout, int state)
-{
-       if (!x->done) {
-               DECLARE_WAITQUEUE(wait, current);
-
-               __add_wait_queue_tail_exclusive(&x->wait, &wait);
-               do {
-                       if (signal_pending_state(state, current)) {
-                               timeout = -ERESTARTSYS;
-                               break;
-                       }
-                       __set_current_state(state);
-                       spin_unlock_irq(&x->wait.lock);
-                       timeout = action(timeout);
-                       spin_lock_irq(&x->wait.lock);
-               } while (!x->done && timeout);
-               __remove_wait_queue(&x->wait, &wait);
-               if (!x->done)
-                       return timeout;
-       }
-       x->done--;
-       return timeout ?: 1;
-}
-
-static inline long __sched
-__wait_for_common(struct completion *x,
-                 long (*action)(long), long timeout, int state)
-{
-       might_sleep();
-
-       spin_lock_irq(&x->wait.lock);
-       timeout = do_wait_for_common(x, action, timeout, state);
-       spin_unlock_irq(&x->wait.lock);
-       return timeout;
-}
-
-static long __sched
-wait_for_common(struct completion *x, long timeout, int state)
-{
-       return __wait_for_common(x, schedule_timeout, timeout, state);
-}
-
-static long __sched
-wait_for_common_io(struct completion *x, long timeout, int state)
-{
-       return __wait_for_common(x, io_schedule_timeout, timeout, state);
-}
-
-/**
- * wait_for_completion: - waits for completion of a task
- * @x:  holds the state of this particular completion
- *
- * This waits to be signaled for completion of a specific task. It is NOT
- * interruptible and there is no timeout.
- *
- * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
- * and interrupt capability. Also see complete().
- */
-void __sched wait_for_completion(struct completion *x)
-{
-       wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
-}
-EXPORT_SYMBOL(wait_for_completion);
-
-/**
- * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
- * @x:  holds the state of this particular completion
- * @timeout:  timeout value in jiffies
- *
- * This waits for either a completion of a specific task to be signaled or for a
- * specified timeout to expire. The timeout is in jiffies. It is not
- * interruptible.
- *
- * The return value is 0 if timed out, and positive (at least 1, or number of
- * jiffies left till timeout) if completed.
- */
-unsigned long __sched
-wait_for_completion_timeout(struct completion *x, unsigned long timeout)
-{
-       return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
-}
-EXPORT_SYMBOL(wait_for_completion_timeout);
-
-/**
- * wait_for_completion_io: - waits for completion of a task
- * @x:  holds the state of this particular completion
- *
- * This waits to be signaled for completion of a specific task. It is NOT
- * interruptible and there is no timeout. The caller is accounted as waiting
- * for IO.
- */
-void __sched wait_for_completion_io(struct completion *x)
-{
-       wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
-}
-EXPORT_SYMBOL(wait_for_completion_io);
-
-/**
- * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
- * @x:  holds the state of this particular completion
- * @timeout:  timeout value in jiffies
- *
- * This waits for either a completion of a specific task to be signaled or for a
- * specified timeout to expire. The timeout is in jiffies. It is not
- * interruptible. The caller is accounted as waiting for IO.
- *
- * The return value is 0 if timed out, and positive (at least 1, or number of
- * jiffies left till timeout) if completed.
- */
-unsigned long __sched
-wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
-{
-       return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
-}
-EXPORT_SYMBOL(wait_for_completion_io_timeout);
-
-/**
- * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
- * @x:  holds the state of this particular completion
- *
- * This waits for completion of a specific task to be signaled. It is
- * interruptible.
- *
- * The return value is -ERESTARTSYS if interrupted, 0 if completed.
- */
-int __sched wait_for_completion_interruptible(struct completion *x)
-{
-       long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
-       if (t == -ERESTARTSYS)
-               return t;
-       return 0;
-}
-EXPORT_SYMBOL(wait_for_completion_interruptible);
-
-/**
- * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
- * @x:  holds the state of this particular completion
- * @timeout:  timeout value in jiffies
- *
- * This waits for either a completion of a specific task to be signaled or for a
- * specified timeout to expire. It is interruptible. The timeout is in jiffies.
- *
- * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
- * positive (at least 1, or number of jiffies left till timeout) if completed.
- */
-long __sched
-wait_for_completion_interruptible_timeout(struct completion *x,
-                                         unsigned long timeout)
-{
-       return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
-}
-EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
-
-/**
- * wait_for_completion_killable: - waits for completion of a task (killable)
- * @x:  holds the state of this particular completion
- *
- * This waits to be signaled for completion of a specific task. It can be
- * interrupted by a kill signal.
- *
- * The return value is -ERESTARTSYS if interrupted, 0 if completed.
- */
-int __sched wait_for_completion_killable(struct completion *x)
-{
-       long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
-       if (t == -ERESTARTSYS)
-               return t;
-       return 0;
-}
-EXPORT_SYMBOL(wait_for_completion_killable);
-
-/**
- * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
- * @x:  holds the state of this particular completion
- * @timeout:  timeout value in jiffies
- *
- * This waits for either a completion of a specific task to be
- * signaled or for a specified timeout to expire. It can be
- * interrupted by a kill signal. The timeout is in jiffies.
- *
- * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
- * positive (at least 1, or number of jiffies left till timeout) if completed.
- */
-long __sched
-wait_for_completion_killable_timeout(struct completion *x,
-                                    unsigned long timeout)
-{
-       return wait_for_common(x, timeout, TASK_KILLABLE);
-}
-EXPORT_SYMBOL(wait_for_completion_killable_timeout);
-
-/**
- *     try_wait_for_completion - try to decrement a completion without blocking
- *     @x:     completion structure
- *
- *     Returns: 0 if a decrement cannot be done without blocking
- *              1 if a decrement succeeded.
- *
- *     If a completion is being used as a counting completion,
- *     attempt to decrement the counter without blocking. This
- *     enables us to avoid waiting if the resource the completion
- *     is protecting is not available.
- */
-bool try_wait_for_completion(struct completion *x)
-{
-       unsigned long flags;
-       int ret = 1;
-
-       spin_lock_irqsave(&x->wait.lock, flags);
-       if (!x->done)
-               ret = 0;
-       else
-               x->done--;
-       spin_unlock_irqrestore(&x->wait.lock, flags);
-       return ret;
-}
-EXPORT_SYMBOL(try_wait_for_completion);
-
-/**
- *     completion_done - Test to see if a completion has any waiters
- *     @x:     completion structure
- *
- *     Returns: 0 if there are waiters (wait_for_completion() in progress)
- *              1 if there are no waiters.
- *
- */
-bool completion_done(struct completion *x)
-{
-       unsigned long flags;
-       int ret = 1;
-
-       spin_lock_irqsave(&x->wait.lock, flags);
-       if (!x->done)
-               ret = 0;
-       spin_unlock_irqrestore(&x->wait.lock, flags);
-       return ret;
-}
-EXPORT_SYMBOL(completion_done);
-
-static long __sched
-sleep_on_common(wait_queue_head_t *q, int state, long timeout)
-{
-       unsigned long flags;
-       wait_queue_t wait;
-
-       init_waitqueue_entry(&wait, current);
-
-       __set_current_state(state);
-
-       spin_lock_irqsave(&q->lock, flags);
-       __add_wait_queue(q, &wait);
-       spin_unlock(&q->lock);
-       timeout = schedule_timeout(timeout);
-       spin_lock_irq(&q->lock);
-       __remove_wait_queue(q, &wait);
-       spin_unlock_irqrestore(&q->lock, flags);
-
-       return timeout;
-}
-
-void __sched interruptible_sleep_on(wait_queue_head_t *q)
-{
-       sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
-}
-EXPORT_SYMBOL(interruptible_sleep_on);
-
-long __sched
-interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
-{
-       return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
-}
-EXPORT_SYMBOL(interruptible_sleep_on_timeout);
-
-void __sched sleep_on(wait_queue_head_t *q)
-{
-       sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
-}
-EXPORT_SYMBOL(sleep_on);
-
-long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
-{
-       return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
-}
-EXPORT_SYMBOL(sleep_on_timeout);
-
-#ifdef CONFIG_RT_MUTEXES
-
-/*
- * rt_mutex_setprio - set the current priority of a task
- * @p: task
- * @prio: prio value (kernel-internal form)
- *
- * This function changes the 'effective' priority of a task. It does
- * not touch ->normal_prio like __setscheduler().
- *
- * Used by the rt_mutex code to implement priority inheritance logic.
- */
-void rt_mutex_setprio(struct task_struct *p, int prio)
-{
-       int oldprio, on_rq, running;
-       struct rq *rq;
-       const struct sched_class *prev_class;
-
-       BUG_ON(prio < 0 || prio > MAX_PRIO);
-
-       rq = __task_rq_lock(p);
-
-       /*
-        * Idle task boosting is a nono in general. There is one
-        * exception, when PREEMPT_RT and NOHZ is active:
-        *
-        * The idle task calls get_next_timer_interrupt() and holds
-        * the timer wheel base->lock on the CPU and another CPU wants
-        * to access the timer (probably to cancel it). We can safely
-        * ignore the boosting request, as the idle CPU runs this code
-        * with interrupts disabled and will complete the lock
-        * protected section without being interrupted. So there is no
-        * real need to boost.
-        */
-       if (unlikely(p == rq->idle)) {
-               WARN_ON(p != rq->curr);
-               WARN_ON(p->pi_blocked_on);
-               goto out_unlock;
-       }
-
-       trace_sched_pi_setprio(p, prio);
-       oldprio = p->prio;
-       prev_class = p->sched_class;
-       on_rq = p->on_rq;
-       running = task_current(rq, p);
-       if (on_rq)
-               dequeue_task(rq, p, 0);
-       if (running)
-               p->sched_class->put_prev_task(rq, p);
-
-       if (rt_prio(prio))
-               p->sched_class = &rt_sched_class;
-       else
-               p->sched_class = &fair_sched_class;
-
-       p->prio = prio;
-
-       if (running)
-               p->sched_class->set_curr_task(rq);
-       if (on_rq)
-               enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
-
-       check_class_changed(rq, p, prev_class, oldprio);
-out_unlock:
-       __task_rq_unlock(rq);
-}
-#endif
-void set_user_nice(struct task_struct *p, long nice)
-{
-       int old_prio, delta, on_rq;
-       unsigned long flags;
-       struct rq *rq;
-
-       if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
-               return;
-       /*
-        * We have to be careful, if called from sys_setpriority(),
-        * the task might be in the middle of scheduling on another CPU.
-        */
-       rq = task_rq_lock(p, &flags);
-       /*
-        * The RT priorities are set via sched_setscheduler(), but we still
-        * allow the 'normal' nice value to be set - but as expected
-        * it wont have any effect on scheduling until the task is
-        * SCHED_FIFO/SCHED_RR:
-        */
-       if (task_has_rt_policy(p)) {
-               p->static_prio = NICE_TO_PRIO(nice);
-               goto out_unlock;
-       }
-       on_rq = p->on_rq;
-       if (on_rq)
-               dequeue_task(rq, p, 0);
-
-       p->static_prio = NICE_TO_PRIO(nice);
-       set_load_weight(p);
-       old_prio = p->prio;
-       p->prio = effective_prio(p);
-       delta = p->prio - old_prio;
-
-       if (on_rq) {
-               enqueue_task(rq, p, 0);
-               /*
-                * If the task increased its priority or is running and
-                * lowered its priority, then reschedule its CPU:
-                */
-               if (delta < 0 || (delta > 0 && task_running(rq, p)))
-                       resched_task(rq->curr);
-       }
-out_unlock:
-       task_rq_unlock(rq, p, &flags);
-}
-EXPORT_SYMBOL(set_user_nice);
-
-/*
- * can_nice - check if a task can reduce its nice value
- * @p: task
- * @nice: nice value
- */
-int can_nice(const struct task_struct *p, const int nice)
-{
-       /* convert nice value [19,-20] to rlimit style value [1,40] */
-       int nice_rlim = 20 - nice;
-
-       return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
-               capable(CAP_SYS_NICE));
-}
-
-#ifdef __ARCH_WANT_SYS_NICE
-
-/*
- * sys_nice - change the priority of the current process.
- * @increment: priority increment
- *
- * sys_setpriority is a more generic, but much slower function that
- * does similar things.
- */
-SYSCALL_DEFINE1(nice, int, increment)
-{
-       long nice, retval;
-
-       /*
-        * Setpriority might change our priority at the same moment.
-        * We don't have to worry. Conceptually one call occurs first
-        * and we have a single winner.
-        */
-       if (increment < -40)
-               increment = -40;
-       if (increment > 40)
-               increment = 40;
-
-       nice = TASK_NICE(current) + increment;
-       if (nice < -20)
-               nice = -20;
-       if (nice > 19)
-               nice = 19;
-
-       if (increment < 0 && !can_nice(current, nice))
-               return -EPERM;
-
-       retval = security_task_setnice(current, nice);
-       if (retval)
-               return retval;
-
-       set_user_nice(current, nice);
-       return 0;
-}
-
-#endif
-
-/**
- * task_prio - return the priority value of a given task.
- * @p: the task in question.
- *
- * This is the priority value as seen by users in /proc.
- * RT tasks are offset by -200. Normal tasks are centered
- * around 0, value goes from -16 to +15.
- */
-int task_prio(const struct task_struct *p)
-{
-       return p->prio - MAX_RT_PRIO;
-}
-
-/**
- * task_nice - return the nice value of a given task.
- * @p: the task in question.
- */
-int task_nice(const struct task_struct *p)
-{
-       return TASK_NICE(p);
-}
-EXPORT_SYMBOL(task_nice);
-
-/**
- * idle_cpu - is a given cpu idle currently?
- * @cpu: the processor in question.
- */
-int idle_cpu(int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-
-       if (rq->curr != rq->idle)
-               return 0;
-
-       if (rq->nr_running)
-               return 0;
-
-#ifdef CONFIG_SMP
-       if (!llist_empty(&rq->wake_list))
-               return 0;
-#endif
-
-       return 1;
-}
-
-/**
- * idle_task - return the idle task for a given cpu.
- * @cpu: the processor in question.
- */
-struct task_struct *idle_task(int cpu)
-{
-       return cpu_rq(cpu)->idle;
-}
-
-/**
- * find_process_by_pid - find a process with a matching PID value.
- * @pid: the pid in question.
- */
-static struct task_struct *find_process_by_pid(pid_t pid)
-{
-       return pid ? find_task_by_vpid(pid) : current;
-}
-
-/* Actually do priority change: must hold rq lock. */
-static void
-__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
-{
-       p->policy = policy;
-       p->rt_priority = prio;
-       p->normal_prio = normal_prio(p);
-       /* we are holding p->pi_lock already */
-       p->prio = rt_mutex_getprio(p);
-       if (rt_prio(p->prio))
-               p->sched_class = &rt_sched_class;
-       else
-               p->sched_class = &fair_sched_class;
-       set_load_weight(p);
-}
-
-/*
- * check the target process has a UID that matches the current process's
- */
-static bool check_same_owner(struct task_struct *p)
-{
-       const struct cred *cred = current_cred(), *pcred;
-       bool match;
-
-       rcu_read_lock();
-       pcred = __task_cred(p);
-       match = (uid_eq(cred->euid, pcred->euid) ||
-                uid_eq(cred->euid, pcred->uid));
-       rcu_read_unlock();
-       return match;
-}
-
-static int __sched_setscheduler(struct task_struct *p, int policy,
-                               const struct sched_param *param, bool user)
-{
-       int retval, oldprio, oldpolicy = -1, on_rq, running;
-       unsigned long flags;
-       const struct sched_class *prev_class;
-       struct rq *rq;
-       int reset_on_fork;
-
-       /* may grab non-irq protected spin_locks */
-       BUG_ON(in_interrupt());
-recheck:
-       /* double check policy once rq lock held */
-       if (policy < 0) {
-               reset_on_fork = p->sched_reset_on_fork;
-               policy = oldpolicy = p->policy;
-       } else {
-               reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
-               policy &= ~SCHED_RESET_ON_FORK;
-
-               if (policy != SCHED_FIFO && policy != SCHED_RR &&
-                               policy != SCHED_NORMAL && policy != SCHED_BATCH &&
-                               policy != SCHED_IDLE)
-                       return -EINVAL;
-       }
-
-       /*
-        * Valid priorities for SCHED_FIFO and SCHED_RR are
-        * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
-        * SCHED_BATCH and SCHED_IDLE is 0.
-        */
-       if (param->sched_priority < 0 ||
-           (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
-           (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
-               return -EINVAL;
-       if (rt_policy(policy) != (param->sched_priority != 0))
-               return -EINVAL;
-
-       /*
-        * Allow unprivileged RT tasks to decrease priority:
-        */
-       if (user && !capable(CAP_SYS_NICE)) {
-               if (rt_policy(policy)) {
-                       unsigned long rlim_rtprio =
-                                       task_rlimit(p, RLIMIT_RTPRIO);
-
-                       /* can't set/change the rt policy */
-                       if (policy != p->policy && !rlim_rtprio)
-                               return -EPERM;
-
-                       /* can't increase priority */
-                       if (param->sched_priority > p->rt_priority &&
-                           param->sched_priority > rlim_rtprio)
-                               return -EPERM;
-               }
-
-               /*
-                * Treat SCHED_IDLE as nice 20. Only allow a switch to
-                * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
-                */
-               if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
-                       if (!can_nice(p, TASK_NICE(p)))
-                               return -EPERM;
-               }
-
-               /* can't change other user's priorities */
-               if (!check_same_owner(p))
-                       return -EPERM;
-
-               /* Normal users shall not reset the sched_reset_on_fork flag */
-               if (p->sched_reset_on_fork && !reset_on_fork)
-                       return -EPERM;
-       }
-
-       if (user) {
-               retval = security_task_setscheduler(p);
-               if (retval)
-                       return retval;
-       }
-
-       /*
-        * make sure no PI-waiters arrive (or leave) while we are
-        * changing the priority of the task:
-        *
-        * To be able to change p->policy safely, the appropriate
-        * runqueue lock must be held.
-        */
-       rq = task_rq_lock(p, &flags);
-
-       /*
-        * Changing the policy of the stop threads its a very bad idea
-        */
-       if (p == rq->stop) {
-               task_rq_unlock(rq, p, &flags);
-               return -EINVAL;
-       }
-
-       /*
-        * If not changing anything there's no need to proceed further:
-        */
-       if (unlikely(policy == p->policy && (!rt_policy(policy) ||
-                       param->sched_priority == p->rt_priority))) {
-               task_rq_unlock(rq, p, &flags);
-               return 0;
-       }
-
-#ifdef CONFIG_RT_GROUP_SCHED
-       if (user) {
-               /*
-                * Do not allow realtime tasks into groups that have no runtime
-                * assigned.
-                */
-               if (rt_bandwidth_enabled() && rt_policy(policy) &&
-                               task_group(p)->rt_bandwidth.rt_runtime == 0 &&
-                               !task_group_is_autogroup(task_group(p))) {
-                       task_rq_unlock(rq, p, &flags);
-                       return -EPERM;
-               }
-       }
-#endif
-
-       /* recheck policy now with rq lock held */
-       if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
-               policy = oldpolicy = -1;
-               task_rq_unlock(rq, p, &flags);
-               goto recheck;
-       }
-       on_rq = p->on_rq;
-       running = task_current(rq, p);
-       if (on_rq)
-               dequeue_task(rq, p, 0);
-       if (running)
-               p->sched_class->put_prev_task(rq, p);
-
-       p->sched_reset_on_fork = reset_on_fork;
-
-       oldprio = p->prio;
-       prev_class = p->sched_class;
-       __setscheduler(rq, p, policy, param->sched_priority);
-
-       if (running)
-               p->sched_class->set_curr_task(rq);
-       if (on_rq)
-               enqueue_task(rq, p, 0);
-
-       check_class_changed(rq, p, prev_class, oldprio);
-       task_rq_unlock(rq, p, &flags);
-
-       rt_mutex_adjust_pi(p);
-
-       return 0;
-}
-
-/**
- * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
- * @p: the task in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- *
- * NOTE that the task may be already dead.
- */
-int sched_setscheduler(struct task_struct *p, int policy,
-                      const struct sched_param *param)
-{
-       return __sched_setscheduler(p, policy, param, true);
-}
-EXPORT_SYMBOL_GPL(sched_setscheduler);
-
-/**
- * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
- * @p: the task in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- *
- * Just like sched_setscheduler, only don't bother checking if the
- * current context has permission.  For example, this is needed in
- * stop_machine(): we create temporary high priority worker threads,
- * but our caller might not have that capability.
- */
-int sched_setscheduler_nocheck(struct task_struct *p, int policy,
-                              const struct sched_param *param)
-{
-       return __sched_setscheduler(p, policy, param, false);
-}
-
-static int
-do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
-{
-       struct sched_param lparam;
-       struct task_struct *p;
-       int retval;
-
-       if (!param || pid < 0)
-               return -EINVAL;
-       if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
-               return -EFAULT;
-
-       rcu_read_lock();
-       retval = -ESRCH;
-       p = find_process_by_pid(pid);
-       if (p != NULL)
-               retval = sched_setscheduler(p, policy, &lparam);
-       rcu_read_unlock();
-
-       return retval;
-}
-
-/**
- * sys_sched_setscheduler - set/change the scheduler policy and RT priority
- * @pid: the pid in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- */
-SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
-               struct sched_param __user *, param)
-{
-       /* negative values for policy are not valid */
-       if (policy < 0)
-               return -EINVAL;
-
-       return do_sched_setscheduler(pid, policy, param);
-}
-
-/**
- * sys_sched_setparam - set/change the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the new RT priority.
- */
-SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
-{
-       return do_sched_setscheduler(pid, -1, param);
-}
-
-/**
- * sys_sched_getscheduler - get the policy (scheduling class) of a thread
- * @pid: the pid in question.
- */
-SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
-{
-       struct task_struct *p;
-       int retval;
-
-       if (pid < 0)
-               return -EINVAL;
-
-       retval = -ESRCH;
-       rcu_read_lock();
-       p = find_process_by_pid(pid);
-       if (p) {
-               retval = security_task_getscheduler(p);
-               if (!retval)
-                       retval = p->policy
-                               | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
-       }
-       rcu_read_unlock();
-       return retval;
-}
-
-/**
- * sys_sched_getparam - get the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the RT priority.
- */
-SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
-{
-       struct sched_param lp;
-       struct task_struct *p;
-       int retval;
-
-       if (!param || pid < 0)
-               return -EINVAL;
-
-       rcu_read_lock();
-       p = find_process_by_pid(pid);
-       retval = -ESRCH;
-       if (!p)
-               goto out_unlock;
-
-       retval = security_task_getscheduler(p);
-       if (retval)
-               goto out_unlock;
-
-       lp.sched_priority = p->rt_priority;
-       rcu_read_unlock();
-
-       /*
-        * This one might sleep, we cannot do it with a spinlock held ...
-        */
-       retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
-
-       return retval;
-
-out_unlock:
-       rcu_read_unlock();
-       return retval;
-}
-
-long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
-{
-       cpumask_var_t cpus_allowed, new_mask;
-       struct task_struct *p;
-       int retval;
-
-       get_online_cpus();
-       rcu_read_lock();
-
-       p = find_process_by_pid(pid);
-       if (!p) {
-               rcu_read_unlock();
-               put_online_cpus();
-               return -ESRCH;
-       }
-
-       /* Prevent p going away */
-       get_task_struct(p);
-       rcu_read_unlock();
-
-       if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
-               retval = -ENOMEM;
-               goto out_put_task;
-       }
-       if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
-               retval = -ENOMEM;
-               goto out_free_cpus_allowed;
-       }
-       retval = -EPERM;
-       if (!check_same_owner(p)) {
-               rcu_read_lock();
-               if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
-                       rcu_read_unlock();
-                       goto out_unlock;
-               }
-               rcu_read_unlock();
-       }
-
-       retval = security_task_setscheduler(p);
-       if (retval)
-               goto out_unlock;
-
-       cpuset_cpus_allowed(p, cpus_allowed);
-       cpumask_and(new_mask, in_mask, cpus_allowed);
-again:
-       retval = set_cpus_allowed_ptr(p, new_mask);
-
-       if (!retval) {
-               cpuset_cpus_allowed(p, cpus_allowed);
-               if (!cpumask_subset(new_mask, cpus_allowed)) {
-                       /*
-                        * We must have raced with a concurrent cpuset
-                        * update. Just reset the cpus_allowed to the
-                        * cpuset's cpus_allowed
-                        */
-                       cpumask_copy(new_mask, cpus_allowed);
-                       goto again;
-               }
-       }
-out_unlock:
-       free_cpumask_var(new_mask);
-out_free_cpus_allowed:
-       free_cpumask_var(cpus_allowed);
-out_put_task:
-       put_task_struct(p);
-       put_online_cpus();
-       return retval;
-}
-
-static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
-                            struct cpumask *new_mask)
-{
-       if (len < cpumask_size())
-               cpumask_clear(new_mask);
-       else if (len > cpumask_size())
-               len = cpumask_size();
-
-       return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
-}
-
-/**
- * sys_sched_setaffinity - set the cpu affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to the new cpu mask
- */
-SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
-               unsigned long __user *, user_mask_ptr)
-{
-       cpumask_var_t new_mask;
-       int retval;
-
-       if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
-               return -ENOMEM;
-
-       retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
-       if (retval == 0)
-               retval = sched_setaffinity(pid, new_mask);
-       free_cpumask_var(new_mask);
-       return retval;
-}
-
-long sched_getaffinity(pid_t pid, struct cpumask *mask)
-{
-       struct task_struct *p;
-       unsigned long flags;
-       int retval;
-
-       get_online_cpus();
-       rcu_read_lock();
-
-       retval = -ESRCH;
-       p = find_process_by_pid(pid);
-       if (!p)
-               goto out_unlock;
-
-       retval = security_task_getscheduler(p);
-       if (retval)
-               goto out_unlock;
-
-       raw_spin_lock_irqsave(&p->pi_lock, flags);
-       cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
-       raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-
-out_unlock:
-       rcu_read_unlock();
-       put_online_cpus();
-
-       return retval;
-}
-
-/**
- * sys_sched_getaffinity - get the cpu affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to hold the current cpu mask
- */
-SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
-               unsigned long __user *, user_mask_ptr)
-{
-       int ret;
-       cpumask_var_t mask;
-
-       if ((len * BITS_PER_BYTE) < nr_cpu_ids)
-               return -EINVAL;
-       if (len & (sizeof(unsigned long)-1))
-               return -EINVAL;
-
-       if (!alloc_cpumask_var(&mask, GFP_KERNEL))
-               return -ENOMEM;
-
-       ret = sched_getaffinity(pid, mask);
-       if (ret == 0) {
-               size_t retlen = min_t(size_t, len, cpumask_size());
-
-               if (copy_to_user(user_mask_ptr, mask, retlen))
-                       ret = -EFAULT;
-               else
-                       ret = retlen;
-       }
-       free_cpumask_var(mask);
-
-       return ret;
-}
-
-/**
- * sys_sched_yield - yield the current processor to other threads.
- *
- * This function yields the current CPU to other tasks. If there are no
- * other threads running on this CPU then this function will return.
- */
-SYSCALL_DEFINE0(sched_yield)
-{
-       struct rq *rq = this_rq_lock();
-
-       schedstat_inc(rq, yld_count);
-       current->sched_class->yield_task(rq);
-
-       /*
-        * Since we are going to call schedule() anyway, there's
-        * no need to preempt or enable interrupts:
-        */
-       __release(rq->lock);
-       spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
-       do_raw_spin_unlock(&rq->lock);
-       sched_preempt_enable_no_resched();
-
-       schedule();
-
-       return 0;
-}
-
-static inline int should_resched(void)
-{
-       return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
-}
-
-static void __cond_resched(void)
-{
-       add_preempt_count(PREEMPT_ACTIVE);
-       __schedule();
-       sub_preempt_count(PREEMPT_ACTIVE);
-}
-
-int __sched _cond_resched(void)
-{
-       if (should_resched()) {
-               __cond_resched();
-               return 1;
-       }
-       return 0;
-}
-EXPORT_SYMBOL(_cond_resched);
-
-/*
- * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
- * call schedule, and on return reacquire the lock.
- *
- * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
- * operations here to prevent schedule() from being called twice (once via
- * spin_unlock(), once by hand).
- */
-int __cond_resched_lock(spinlock_t *lock)
-{
-       int resched = should_resched();
-       int ret = 0;
-
-       lockdep_assert_held(lock);
-
-       if (spin_needbreak(lock) || resched) {
-               spin_unlock(lock);
-               if (resched)
-                       __cond_resched();
-               else
-                       cpu_relax();
-               ret = 1;
-               spin_lock(lock);
-       }
-       return ret;
-}
-EXPORT_SYMBOL(__cond_resched_lock);
-
-int __sched __cond_resched_softirq(void)
-{
-       BUG_ON(!in_softirq());
-
-       if (should_resched()) {
-               local_bh_enable();
-               __cond_resched();
-               local_bh_disable();
-               return 1;
-       }
-       return 0;
-}
-EXPORT_SYMBOL(__cond_resched_softirq);
-
-/**
- * yield - yield the current processor to other threads.
- *
- * Do not ever use this function, there's a 99% chance you're doing it wrong.
- *
- * The scheduler is at all times free to pick the calling task as the most
- * eligible task to run, if removing the yield() call from your code breaks
- * it, its already broken.
- *
- * Typical broken usage is:
- *
- * while (!event)
- *     yield();
- *
- * where one assumes that yield() will let 'the other' process run that will
- * make event true. If the current task is a SCHED_FIFO task that will never
- * happen. Never use yield() as a progress guarantee!!
- *
- * If you want to use yield() to wait for something, use wait_event().
- * If you want to use yield() to be 'nice' for others, use cond_resched().
- * If you still want to use yield(), do not!
- */
-void __sched yield(void)
-{
-       set_current_state(TASK_RUNNING);
-       sys_sched_yield();
-}
-EXPORT_SYMBOL(yield);
-
-/**
- * yield_to - yield the current processor to another thread in
- * your thread group, or accelerate that thread toward the
- * processor it's on.
- * @p: target task
- * @preempt: whether task preemption is allowed or not
- *
- * It's the caller's job to ensure that the target task struct
- * can't go away on us before we can do any checks.
- *
- * Returns:
- *     true (>0) if we indeed boosted the target task.
- *     false (0) if we failed to boost the target.
- *     -ESRCH if there's no task to yield to.
- */
-bool __sched yield_to(struct task_struct *p, bool preempt)
-{
-       struct task_struct *curr = current;
-       struct rq *rq, *p_rq;
-       unsigned long flags;
-       int yielded = 0;
-
-       local_irq_save(flags);
-       rq = this_rq();
-
-again:
-       p_rq = task_rq(p);
-       /*
-        * If we're the only runnable task on the rq and target rq also
-        * has only one task, there's absolutely no point in yielding.
-        */
-       if (rq->nr_running == 1 && p_rq->nr_running == 1) {
-               yielded = -ESRCH;
-               goto out_irq;
-       }
-
-       double_rq_lock(rq, p_rq);
-       while (task_rq(p) != p_rq) {
-               double_rq_unlock(rq, p_rq);
-               goto again;
-       }
-
-       if (!curr->sched_class->yield_to_task)
-               goto out_unlock;
-
-       if (curr->sched_class != p->sched_class)
-               goto out_unlock;
-
-       if (task_running(p_rq, p) || p->state)
-               goto out_unlock;
-
-       yielded = curr->sched_class->yield_to_task(rq, p, preempt);
-       if (yielded) {
-               schedstat_inc(rq, yld_count);
-               /*
-                * Make p's CPU reschedule; pick_next_entity takes care of
-                * fairness.
-                */
-               if (preempt && rq != p_rq)
-                       resched_task(p_rq->curr);
-       }
-
-out_unlock:
-       double_rq_unlock(rq, p_rq);
-out_irq:
-       local_irq_restore(flags);
-
-       if (yielded > 0)
-               schedule();
-
-       return yielded;
-}
-EXPORT_SYMBOL_GPL(yield_to);
-
-/*
- * This task is about to go to sleep on IO. Increment rq->nr_iowait so
- * that process accounting knows that this is a task in IO wait state.
- */
-void __sched io_schedule(void)
-{
-       struct rq *rq = raw_rq();
-
-       delayacct_blkio_start();
-       atomic_inc(&rq->nr_iowait);
-       blk_flush_plug(current);
-       current->in_iowait = 1;
-       schedule();
-       current->in_iowait = 0;
-       atomic_dec(&rq->nr_iowait);
-       delayacct_blkio_end();
-}
-EXPORT_SYMBOL(io_schedule);
-
-long __sched io_schedule_timeout(long timeout)
-{
-       struct rq *rq = raw_rq();
-       long ret;
-
-       delayacct_blkio_start();
-       atomic_inc(&rq->nr_iowait);
-       blk_flush_plug(current);
-       current->in_iowait = 1;
-       ret = schedule_timeout(timeout);
-       current->in_iowait = 0;
-       atomic_dec(&rq->nr_iowait);
-       delayacct_blkio_end();
-       return ret;
-}
-
-/**
- * sys_sched_get_priority_max - return maximum RT priority.
- * @policy: scheduling class.
- *
- * this syscall returns the maximum rt_priority that can be used
- * by a given scheduling class.
- */
-SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
-{
-       int ret = -EINVAL;
-
-       switch (policy) {
-       case SCHED_FIFO:
-       case SCHED_RR:
-               ret = MAX_USER_RT_PRIO-1;
-               break;
-       case SCHED_NORMAL:
-       case SCHED_BATCH:
-       case SCHED_IDLE:
-               ret = 0;
-               break;
-       }
-       return ret;
-}
-
-/**
- * sys_sched_get_priority_min - return minimum RT priority.
- * @policy: scheduling class.
- *
- * this syscall returns the minimum rt_priority that can be used
- * by a given scheduling class.
- */
-SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
-{
-       int ret = -EINVAL;
-
-       switch (policy) {
-       case SCHED_FIFO:
-       case SCHED_RR:
-               ret = 1;
-               break;
-       case SCHED_NORMAL:
-       case SCHED_BATCH:
-       case SCHED_IDLE:
-               ret = 0;
-       }
-       return ret;
-}
-
-/**
- * sys_sched_rr_get_interval - return the default timeslice of a process.
- * @pid: pid of the process.
- * @interval: userspace pointer to the timeslice value.
- *
- * this syscall writes the default timeslice value of a given process
- * into the user-space timespec buffer. A value of '0' means infinity.
- */
-SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
-               struct timespec __user *, interval)
-{
-       struct task_struct *p;
-       unsigned int time_slice;
-       unsigned long flags;
-       struct rq *rq;
-       int retval;
-       struct timespec t;
-
-       if (pid < 0)
-               return -EINVAL;
-
-       retval = -ESRCH;
-       rcu_read_lock();
-       p = find_process_by_pid(pid);
-       if (!p)
-               goto out_unlock;
-
-       retval = security_task_getscheduler(p);
-       if (retval)
-               goto out_unlock;
-
-       rq = task_rq_lock(p, &flags);
-       time_slice = p->sched_class->get_rr_interval(rq, p);
-       task_rq_unlock(rq, p, &flags);
-
-       rcu_read_unlock();
-       jiffies_to_timespec(time_slice, &t);
-       retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
-       return retval;
-
-out_unlock:
-       rcu_read_unlock();
-       return retval;
-}
-
-static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
-
-void sched_show_task(struct task_struct *p)
-{
-       unsigned long free = 0;
-       int ppid;
-       unsigned state;
-
-       state = p->state ? __ffs(p->state) + 1 : 0;
-       printk(KERN_INFO "%-15.15s %c", p->comm,
-               state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
-#if BITS_PER_LONG == 32
-       if (state == TASK_RUNNING)
-               printk(KERN_CONT " running  ");
-       else
-               printk(KERN_CONT " %08lx ", thread_saved_pc(p));
-#else
-       if (state == TASK_RUNNING)
-               printk(KERN_CONT "  running task    ");
-       else
-               printk(KERN_CONT " %016lx ", thread_saved_pc(p));
-#endif
-#ifdef CONFIG_DEBUG_STACK_USAGE
-       free = stack_not_used(p);
-#endif
-       rcu_read_lock();
-       ppid = task_pid_nr(rcu_dereference(p->real_parent));
-       rcu_read_unlock();
-       printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
-               task_pid_nr(p), ppid,
-               (unsigned long)task_thread_info(p)->flags);
-
-       show_stack(p, NULL);
-}
-
-void show_state_filter(unsigned long state_filter)
-{
-       struct task_struct *g, *p;
-
-#if BITS_PER_LONG == 32
-       printk(KERN_INFO
-               "  task                PC stack   pid father\n");
-#else
-       printk(KERN_INFO
-               "  task                        PC stack   pid father\n");
-#endif
-       rcu_read_lock();
-       do_each_thread(g, p) {
-               /*
-                * reset the NMI-timeout, listing all files on a slow
-                * console might take a lot of time:
-                */
-               touch_nmi_watchdog();
-               if (!state_filter || (p->state & state_filter))
-                       sched_show_task(p);
-       } while_each_thread(g, p);
-
-       touch_all_softlockup_watchdogs();
-
-#ifdef CONFIG_SCHED_DEBUG
-       sysrq_sched_debug_show();
-#endif
-       rcu_read_unlock();
-       /*
-        * Only show locks if all tasks are dumped:
-        */
-       if (!state_filter)
-               debug_show_all_locks();
-}
-
-void __cpuinit init_idle_bootup_task(struct task_struct *idle)
-{
-       idle->sched_class = &idle_sched_class;
-}
-
-/**
- * init_idle - set up an idle thread for a given CPU
- * @idle: task in question
- * @cpu: cpu the idle task belongs to
- *
- * NOTE: this function does not set the idle thread's NEED_RESCHED
- * flag, to make booting more robust.
- */
-void __cpuinit init_idle(struct task_struct *idle, int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-       unsigned long flags;
-
-       raw_spin_lock_irqsave(&rq->lock, flags);
-
-       __sched_fork(idle);
-       idle->state = TASK_RUNNING;
-       idle->se.exec_start = sched_clock();
-
-       do_set_cpus_allowed(idle, cpumask_of(cpu));
-       /*
-        * We're having a chicken and egg problem, even though we are
-        * holding rq->lock, the cpu isn't yet set to this cpu so the
-        * lockdep check in task_group() will fail.
-        *
-        * Similar case to sched_fork(). / Alternatively we could
-        * use task_rq_lock() here and obtain the other rq->lock.
-        *
-        * Silence PROVE_RCU
-        */
-       rcu_read_lock();
-       __set_task_cpu(idle, cpu);
-       rcu_read_unlock();
-
-       rq->curr = rq->idle = idle;
-#if defined(CONFIG_SMP)
-       idle->on_cpu = 1;
-#endif
-       raw_spin_unlock_irqrestore(&rq->lock, flags);
-
-       /* Set the preempt count _outside_ the spinlocks! */
-       task_thread_info(idle)->preempt_count = 0;
-
-       /*
-        * The idle tasks have their own, simple scheduling class:
-        */
-       idle->sched_class = &idle_sched_class;
-       ftrace_graph_init_idle_task(idle, cpu);
-       vtime_init_idle(idle);
-#if defined(CONFIG_SMP)
-       sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
-#endif
-}
-
-#ifdef CONFIG_SMP
-void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
-{
-       if (p->sched_class && p->sched_class->set_cpus_allowed)
-               p->sched_class->set_cpus_allowed(p, new_mask);
-
-       cpumask_copy(&p->cpus_allowed, new_mask);
-       p->nr_cpus_allowed = cpumask_weight(new_mask);
-}
-
-/*
- * This is how migration works:
- *
- * 1) we invoke migration_cpu_stop() on the target CPU using
- *    stop_one_cpu().
- * 2) stopper starts to run (implicitly forcing the migrated thread
- *    off the CPU)
- * 3) it checks whether the migrated task is still in the wrong runqueue.
- * 4) if it's in the wrong runqueue then the migration thread removes
- *    it and puts it into the right queue.
- * 5) stopper completes and stop_one_cpu() returns and the migration
- *    is done.
- */
-
-/*
- * Change a given task's CPU affinity. Migrate the thread to a
- * proper CPU and schedule it away if the CPU it's executing on
- * is removed from the allowed bitmask.
- *
- * NOTE: the caller must have a valid reference to the task, the
- * task must not exit() & deallocate itself prematurely. The
- * call is not atomic; no spinlocks may be held.
- */
-int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
-{
-       unsigned long flags;
-       struct rq *rq;
-       unsigned int dest_cpu;
-       int ret = 0;
-
-       rq = task_rq_lock(p, &flags);
-
-       if (cpumask_equal(&p->cpus_allowed, new_mask))
-               goto out;
-
-       if (!cpumask_intersects(new_mask, cpu_active_mask)) {
-               ret = -EINVAL;
-               goto out;
-       }
-
-       if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
-               ret = -EINVAL;
-               goto out;
-       }
-
-       do_set_cpus_allowed(p, new_mask);
-
-       /* Can the task run on the task's current CPU? If so, we're done */
-       if (cpumask_test_cpu(task_cpu(p), new_mask))
-               goto out;
-
-       dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
-       if (p->on_rq) {
-               struct migration_arg arg = { p, dest_cpu };
-               /* Need help from migration thread: drop lock and wait. */
-               task_rq_unlock(rq, p, &flags);
-               stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
-               tlb_migrate_finish(p->mm);
-               return 0;
-       }
-out:
-       task_rq_unlock(rq, p, &flags);
-
-       return ret;
-}
-EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
-
-/*
- * Move (not current) task off this cpu, onto dest cpu. We're doing
- * this because either it can't run here any more (set_cpus_allowed()
- * away from this CPU, or CPU going down), or because we're
- * attempting to rebalance this task on exec (sched_exec).
- *
- * So we race with normal scheduler movements, but that's OK, as long
- * as the task is no longer on this CPU.
- *
- * Returns non-zero if task was successfully migrated.
- */
-static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
-{
-       struct rq *rq_dest, *rq_src;
-       int ret = 0;
-
-       if (unlikely(!cpu_active(dest_cpu)))
-               return ret;
-
-       rq_src = cpu_rq(src_cpu);
-       rq_dest = cpu_rq(dest_cpu);
-
-       raw_spin_lock(&p->pi_lock);
-       double_rq_lock(rq_src, rq_dest);
-       /* Already moved. */
-       if (task_cpu(p) != src_cpu)
-               goto done;
-       /* Affinity changed (again). */
-       if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
-               goto fail;
-
-       /*
-        * If we're not on a rq, the next wake-up will ensure we're
-        * placed properly.
-        */
-       if (p->on_rq) {
-               dequeue_task(rq_src, p, 0);
-               set_task_cpu(p, dest_cpu);
-               enqueue_task(rq_dest, p, 0);
-               check_preempt_curr(rq_dest, p, 0);
-       }
-done:
-       ret = 1;
-fail:
-       double_rq_unlock(rq_src, rq_dest);
-       raw_spin_unlock(&p->pi_lock);
-       return ret;
-}
-
-/*
- * migration_cpu_stop - this will be executed by a highprio stopper thread
- * and performs thread migration by bumping thread off CPU then
- * 'pushing' onto another runqueue.
- */
-static int migration_cpu_stop(void *data)
-{
-       struct migration_arg *arg = data;
-
-       /*
-        * The original target cpu might have gone down and we might
-        * be on another cpu but it doesn't matter.
-        */
-       local_irq_disable();
-       __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
-       local_irq_enable();
-       return 0;
-}
-
-#ifdef CONFIG_HOTPLUG_CPU
-
-/*
- * Ensures that the idle task is using init_mm right before its cpu goes
- * offline.
- */
-void idle_task_exit(void)
-{
-       struct mm_struct *mm = current->active_mm;
-
-       BUG_ON(cpu_online(smp_processor_id()));
-
-       if (mm != &init_mm)
-               switch_mm(mm, &init_mm, current);
-       mmdrop(mm);
-}
-
-/*
- * Since this CPU is going 'away' for a while, fold any nr_active delta
- * we might have. Assumes we're called after migrate_tasks() so that the
- * nr_active count is stable.
- *
- * Also see the comment "Global load-average calculations".
- */
-static void calc_load_migrate(struct rq *rq)
-{
-       long delta = calc_load_fold_active(rq);
-       if (delta)
-               atomic_long_add(delta, &calc_load_tasks);
-}
-
-/*
- * Migrate all tasks from the rq, sleeping tasks will be migrated by
- * try_to_wake_up()->select_task_rq().
- *
- * Called with rq->lock held even though we'er in stop_machine() and
- * there's no concurrency possible, we hold the required locks anyway
- * because of lock validation efforts.
- */
-static void migrate_tasks(unsigned int dead_cpu)
-{
-       struct rq *rq = cpu_rq(dead_cpu);
-       struct task_struct *next, *stop = rq->stop;
-       int dest_cpu;
-
-       /*
-        * Fudge the rq selection such that the below task selection loop
-        * doesn't get stuck on the currently eligible stop task.
-        *
-        * We're currently inside stop_machine() and the rq is either stuck
-        * in the stop_machine_cpu_stop() loop, or we're executing this code,
-        * either way we should never end up calling schedule() until we're
-        * done here.
-        */
-       rq->stop = NULL;
-
-       for ( ; ; ) {
-               /*
-                * There's this thread running, bail when that's the only
-                * remaining thread.
-                */
-               if (rq->nr_running == 1)
-                       break;
-
-               next = pick_next_task(rq);
-               BUG_ON(!next);
-               next->sched_class->put_prev_task(rq, next);
-
-               /* Find suitable destination for @next, with force if needed. */
-               dest_cpu = select_fallback_rq(dead_cpu, next);
-               raw_spin_unlock(&rq->lock);
-
-               __migrate_task(next, dead_cpu, dest_cpu);
-
-               raw_spin_lock(&rq->lock);
-       }
-
-       rq->stop = stop;
-}
-
-#endif /* CONFIG_HOTPLUG_CPU */
-
-#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
-
-static struct ctl_table sd_ctl_dir[] = {
-       {
-               .procname       = "sched_domain",
-               .mode           = 0555,
-       },
-       {}
-};
-
-static struct ctl_table sd_ctl_root[] = {
-       {
-               .procname       = "kernel",
-               .mode           = 0555,
-               .child          = sd_ctl_dir,
-       },
-       {}
-};
-
-static struct ctl_table *sd_alloc_ctl_entry(int n)
-{
-       struct ctl_table *entry =
-               kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
-
-       return entry;
-}
-
-static void sd_free_ctl_entry(struct ctl_table **tablep)
-{
-       struct ctl_table *entry;
-
-       /*
-        * In the intermediate directories, both the child directory and
-        * procname are dynamically allocated and could fail but the mode
-        * will always be set. In the lowest directory the names are
-        * static strings and all have proc handlers.
-        */
-       for (entry = *tablep; entry->mode; entry++) {
-               if (entry->child)
-                       sd_free_ctl_entry(&entry->child);
-               if (entry->proc_handler == NULL)
-                       kfree(entry->procname);
-       }
-
-       kfree(*tablep);
-       *tablep = NULL;
-}
-
-static int min_load_idx = 0;
-static int max_load_idx = CPU_LOAD_IDX_MAX-1;
-
-static void
-set_table_entry(struct ctl_table *entry,
-               const char *procname, void *data, int maxlen,
-               umode_t mode, proc_handler *proc_handler,
-               bool load_idx)
-{
-       entry->procname = procname;
-       entry->data = data;
-       entry->maxlen = maxlen;
-       entry->mode = mode;
-       entry->proc_handler = proc_handler;
-
-       if (load_idx) {
-               entry->extra1 = &min_load_idx;
-               entry->extra2 = &max_load_idx;
-       }
-}
-
-static struct ctl_table *
-sd_alloc_ctl_domain_table(struct sched_domain *sd)
-{
-       struct ctl_table *table = sd_alloc_ctl_entry(13);
-
-       if (table == NULL)
-               return NULL;
-
-       set_table_entry(&table[0], "min_interval", &sd->min_interval,
-               sizeof(long), 0644, proc_doulongvec_minmax, false);
-       set_table_entry(&table[1], "max_interval", &sd->max_interval,
-               sizeof(long), 0644, proc_doulongvec_minmax, false);
-       set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
-               sizeof(int), 0644, proc_dointvec_minmax, true);
-       set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
-               sizeof(int), 0644, proc_dointvec_minmax, true);
-       set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
-               sizeof(int), 0644, proc_dointvec_minmax, true);
-       set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
-               sizeof(int), 0644, proc_dointvec_minmax, true);
-       set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
-               sizeof(int), 0644, proc_dointvec_minmax, true);
-       set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
-               sizeof(int), 0644, proc_dointvec_minmax, false);
-       set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
-               sizeof(int), 0644, proc_dointvec_minmax, false);
-       set_table_entry(&table[9], "cache_nice_tries",
-               &sd->cache_nice_tries,
-               sizeof(int), 0644, proc_dointvec_minmax, false);
-       set_table_entry(&table[10], "flags", &sd->flags,
-               sizeof(int), 0644, proc_dointvec_minmax, false);
-       set_table_entry(&table[11], "name", sd->name,
-               CORENAME_MAX_SIZE, 0444, proc_dostring, false);
-       /* &table[12] is terminator */
-
-       return table;
-}
-
-static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
-{
-       struct ctl_table *entry, *table;
-       struct sched_domain *sd;
-       int domain_num = 0, i;
-       char buf[32];
-
-       for_each_domain(cpu, sd)
-               domain_num++;
-       entry = table = sd_alloc_ctl_entry(domain_num + 1);
-       if (table == NULL)
-               return NULL;
-
-       i = 0;
-       for_each_domain(cpu, sd) {
-               snprintf(buf, 32, "domain%d", i);
-               entry->procname = kstrdup(buf, GFP_KERNEL);
-               entry->mode = 0555;
-               entry->child = sd_alloc_ctl_domain_table(sd);
-               entry++;
-               i++;
-       }
-       return table;
-}
-
-static struct ctl_table_header *sd_sysctl_header;
-static void register_sched_domain_sysctl(void)
-{
-       int i, cpu_num = num_possible_cpus();
-       struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
-       char buf[32];
-
-       WARN_ON(sd_ctl_dir[0].child);
-       sd_ctl_dir[0].child = entry;
-
-       if (entry == NULL)
-               return;
-
-       for_each_possible_cpu(i) {
-               snprintf(buf, 32, "cpu%d", i);
-               entry->procname = kstrdup(buf, GFP_KERNEL);
-               entry->mode = 0555;
-               entry->child = sd_alloc_ctl_cpu_table(i);
-               entry++;
-       }
-
-       WARN_ON(sd_sysctl_header);
-       sd_sysctl_header = register_sysctl_table(sd_ctl_root);
-}
-
-/* may be called multiple times per register */
-static void unregister_sched_domain_sysctl(void)
-{
-       if (sd_sysctl_header)
-               unregister_sysctl_table(sd_sysctl_header);
-       sd_sysctl_header = NULL;
-       if (sd_ctl_dir[0].child)
-               sd_free_ctl_entry(&sd_ctl_dir[0].child);
-}
-#else
-static void register_sched_domain_sysctl(void)
-{
-}
-static void unregister_sched_domain_sysctl(void)
-{
-}
-#endif
-
-static void set_rq_online(struct rq *rq)
-{
-       if (!rq->online) {
-               const struct sched_class *class;
-
-               cpumask_set_cpu(rq->cpu, rq->rd->online);
-               rq->online = 1;
-
-               for_each_class(class) {
-                       if (class->rq_online)
-                               class->rq_online(rq);
-               }
-       }
-}
-
-static void set_rq_offline(struct rq *rq)
-{
-       if (rq->online) {
-               const struct sched_class *class;
-
-               for_each_class(class) {
-                       if (class->rq_offline)
-                               class->rq_offline(rq);
-               }
-
-               cpumask_clear_cpu(rq->cpu, rq->rd->online);
-               rq->online = 0;
-       }
-}
-
-/*
- * migration_call - callback that gets triggered when a CPU is added.
- * Here we can start up the necessary migration thread for the new CPU.
- */
-static int __cpuinit
-migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
-{
-       int cpu = (long)hcpu;
-       unsigned long flags;
-       struct rq *rq = cpu_rq(cpu);
-
-       switch (action & ~CPU_TASKS_FROZEN) {
-
-       case CPU_UP_PREPARE:
-               rq->calc_load_update = calc_load_update;
-               break;
-
-       case CPU_ONLINE:
-               /* Update our root-domain */
-               raw_spin_lock_irqsave(&rq->lock, flags);
-               if (rq->rd) {
-                       BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
-
-                       set_rq_online(rq);
-               }
-               raw_spin_unlock_irqrestore(&rq->lock, flags);
-               break;
-
-#ifdef CONFIG_HOTPLUG_CPU
-       case CPU_DYING:
-               sched_ttwu_pending();
-               /* Update our root-domain */
-               raw_spin_lock_irqsave(&rq->lock, flags);
-               if (rq->rd) {
-                       BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
-                       set_rq_offline(rq);
-               }
-               migrate_tasks(cpu);
-               BUG_ON(rq->nr_running != 1); /* the migration thread */
-               raw_spin_unlock_irqrestore(&rq->lock, flags);
-               break;
-
-       case CPU_DEAD:
-               calc_load_migrate(rq);
-               break;
-#endif
-       }
-
-       update_max_interval();
-
-       return NOTIFY_OK;
-}
-
-/*
- * Register at high priority so that task migration (migrate_all_tasks)
- * happens before everything else.  This has to be lower priority than
- * the notifier in the perf_event subsystem, though.
- */
-static struct notifier_block __cpuinitdata migration_notifier = {
-       .notifier_call = migration_call,
-       .priority = CPU_PRI_MIGRATION,
-};
-
-static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
-                                     unsigned long action, void *hcpu)
-{
-       switch (action & ~CPU_TASKS_FROZEN) {
-       case CPU_STARTING:
-       case CPU_DOWN_FAILED:
-               set_cpu_active((long)hcpu, true);
-               return NOTIFY_OK;
-       default:
-               return NOTIFY_DONE;
-       }
-}
-
-static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
-                                       unsigned long action, void *hcpu)
-{
-       switch (action & ~CPU_TASKS_FROZEN) {
-       case CPU_DOWN_PREPARE:
-               set_cpu_active((long)hcpu, false);
-               return NOTIFY_OK;
-       default:
-               return NOTIFY_DONE;
-       }
-}
-
-static int __init migration_init(void)
-{
-       void *cpu = (void *)(long)smp_processor_id();
-       int err;
-
-       /* Initialize migration for the boot CPU */
-       err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
-       BUG_ON(err == NOTIFY_BAD);
-       migration_call(&migration_notifier, CPU_ONLINE, cpu);
-       register_cpu_notifier(&migration_notifier);
-
-       /* Register cpu active notifiers */
-       cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
-       cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
-
-       return 0;
-}
-early_initcall(migration_init);
-#endif
-
-#ifdef CONFIG_SMP
-
-static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
-
-#ifdef CONFIG_SCHED_DEBUG
-
-static __read_mostly int sched_debug_enabled;
-
-static int __init sched_debug_setup(char *str)
-{
-       sched_debug_enabled = 1;
-
-       return 0;
-}
-early_param("sched_debug", sched_debug_setup);
-
-static inline bool sched_debug(void)
-{
-       return sched_debug_enabled;
-}
-
-static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
-                                 struct cpumask *groupmask)
-{
-       struct sched_group *group = sd->groups;
-       char str[256];
-
-       cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
-       cpumask_clear(groupmask);
-
-       printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
-
-       if (!(sd->flags & SD_LOAD_BALANCE)) {
-               printk("does not load-balance\n");
-               if (sd->parent)
-                       printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
-                                       " has parent");
-               return -1;
-       }
-
-       printk(KERN_CONT "span %s level %s\n", str, sd->name);
-
-       if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
-               printk(KERN_ERR "ERROR: domain->span does not contain "
-                               "CPU%d\n", cpu);
-       }
-       if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
-               printk(KERN_ERR "ERROR: domain->groups does not contain"
-                               " CPU%d\n", cpu);
-       }
-
-       printk(KERN_DEBUG "%*s groups:", level + 1, "");
-       do {
-               if (!group) {
-                       printk("\n");
-                       printk(KERN_ERR "ERROR: group is NULL\n");
-                       break;
-               }
-
-               /*
-                * Even though we initialize ->power to something semi-sane,
-                * we leave power_orig unset. This allows us to detect if
-                * domain iteration is still funny without causing /0 traps.
-                */
-               if (!group->sgp->power_orig) {
-                       printk(KERN_CONT "\n");
-                       printk(KERN_ERR "ERROR: domain->cpu_power not "
-                                       "set\n");
-                       break;
-               }
-
-               if (!cpumask_weight(sched_group_cpus(group))) {
-                       printk(KERN_CONT "\n");
-                       printk(KERN_ERR "ERROR: empty group\n");
-                       break;
-               }
-
-               if (!(sd->flags & SD_OVERLAP) &&
-                   cpumask_intersects(groupmask, sched_group_cpus(group))) {
-                       printk(KERN_CONT "\n");
-                       printk(KERN_ERR "ERROR: repeated CPUs\n");
-                       break;
-               }
-
-               cpumask_or(groupmask, groupmask, sched_group_cpus(group));
-
-               cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
-
-               printk(KERN_CONT " %s", str);
-               if (group->sgp->power != SCHED_POWER_SCALE) {
-                       printk(KERN_CONT " (cpu_power = %d)",
-                               group->sgp->power);
-               }
-
-               group = group->next;
-       } while (group != sd->groups);
-       printk(KERN_CONT "\n");
-
-       if (!cpumask_equal(sched_domain_span(sd), groupmask))
-               printk(KERN_ERR "ERROR: groups don't span domain->span\n");
-
-       if (sd->parent &&
-           !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
-               printk(KERN_ERR "ERROR: parent span is not a superset "
-                       "of domain->span\n");
-       return 0;
-}
-
-static void sched_domain_debug(struct sched_domain *sd, int cpu)
-{
-       int level = 0;
-
-       if (!sched_debug_enabled)
-               return;
-
-       if (!sd) {
-               printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
-               return;
-       }
-
-       printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
-
-       for (;;) {
-               if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
-                       break;
-               level++;
-               sd = sd->parent;
-               if (!sd)
-                       break;
-       }
-}
-#else /* !CONFIG_SCHED_DEBUG */
-# define sched_domain_debug(sd, cpu) do { } while (0)
-static inline bool sched_debug(void)
-{
-       return false;
-}
-#endif /* CONFIG_SCHED_DEBUG */
-
-static int sd_degenerate(struct sched_domain *sd)
-{
-       if (cpumask_weight(sched_domain_span(sd)) == 1)
-               return 1;
-
-       /* Following flags need at least 2 groups */
-       if (sd->flags & (SD_LOAD_BALANCE |
-                        SD_BALANCE_NEWIDLE |
-                        SD_BALANCE_FORK |
-                        SD_BALANCE_EXEC |
-                        SD_SHARE_CPUPOWER |
-                        SD_SHARE_PKG_RESOURCES)) {
-               if (sd->groups != sd->groups->next)
-                       return 0;
-       }
-
-       /* Following flags don't use groups */
-       if (sd->flags & (SD_WAKE_AFFINE))
-               return 0;
-
-       return 1;
-}
-
-static int
-sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
-{
-       unsigned long cflags = sd->flags, pflags = parent->flags;
-
-       if (sd_degenerate(parent))
-               return 1;
-
-       if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
-               return 0;
-
-       /* Flags needing groups don't count if only 1 group in parent */
-       if (parent->groups == parent->groups->next) {
-               pflags &= ~(SD_LOAD_BALANCE |
-                               SD_BALANCE_NEWIDLE |
-                               SD_BALANCE_FORK |
-                               SD_BALANCE_EXEC |
-                               SD_SHARE_CPUPOWER |
-                               SD_SHARE_PKG_RESOURCES);
-               if (nr_node_ids == 1)
-                       pflags &= ~SD_SERIALIZE;
-       }
-       if (~cflags & pflags)
-               return 0;
-
-       return 1;
-}
-
-static void free_rootdomain(struct rcu_head *rcu)
-{
-       struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
-
-       cpupri_cleanup(&rd->cpupri);
-       free_cpumask_var(rd->rto_mask);
-       free_cpumask_var(rd->online);
-       free_cpumask_var(rd->span);
-       kfree(rd);
-}
-
-static void rq_attach_root(struct rq *rq, struct root_domain *rd)
-{
-       struct root_domain *old_rd = NULL;
-       unsigned long flags;
-
-       raw_spin_lock_irqsave(&rq->lock, flags);
-
-       if (rq->rd) {
-               old_rd = rq->rd;
-
-               if (cpumask_test_cpu(rq->cpu, old_rd->online))
-                       set_rq_offline(rq);
-
-               cpumask_clear_cpu(rq->cpu, old_rd->span);
-
-               /*
-                * If we dont want to free the old_rt yet then
-                * set old_rd to NULL to skip the freeing later
-                * in this function:
-                */
-               if (!atomic_dec_and_test(&old_rd->refcount))
-                       old_rd = NULL;
-       }
-
-       atomic_inc(&rd->refcount);
-       rq->rd = rd;
-
-       cpumask_set_cpu(rq->cpu, rd->span);
-       if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
-               set_rq_online(rq);
-
-       raw_spin_unlock_irqrestore(&rq->lock, flags);
-
-       if (old_rd)
-               call_rcu_sched(&old_rd->rcu, free_rootdomain);
-}
-
-static int init_rootdomain(struct root_domain *rd)
-{
-       memset(rd, 0, sizeof(*rd));
-
-       if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
-               goto out;
-       if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
-               goto free_span;
-       if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
-               goto free_online;
-
-       if (cpupri_init(&rd->cpupri) != 0)
-               goto free_rto_mask;
-       return 0;
-
-free_rto_mask:
-       free_cpumask_var(rd->rto_mask);
-free_online:
-       free_cpumask_var(rd->online);
-free_span:
-       free_cpumask_var(rd->span);
-out:
-       return -ENOMEM;
-}
-
-/*
- * By default the system creates a single root-domain with all cpus as
- * members (mimicking the global state we have today).
- */
-struct root_domain def_root_domain;
-
-static void init_defrootdomain(void)
-{
-       init_rootdomain(&def_root_domain);
-
-       atomic_set(&def_root_domain.refcount, 1);
-}
-
-static struct root_domain *alloc_rootdomain(void)
-{
-       struct root_domain *rd;
-
-       rd = kmalloc(sizeof(*rd), GFP_KERNEL);
-       if (!rd)
-               return NULL;
-
-       if (init_rootdomain(rd) != 0) {
-               kfree(rd);
-               return NULL;
-       }
-
-       return rd;
-}
-
-static void free_sched_groups(struct sched_group *sg, int free_sgp)
-{
-       struct sched_group *tmp, *first;
-
-       if (!sg)
-               return;
-
-       first = sg;
-       do {
-               tmp = sg->next;
-
-               if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
-                       kfree(sg->sgp);
-
-               kfree(sg);
-               sg = tmp;
-       } while (sg != first);
-}
-
-static void free_sched_domain(struct rcu_head *rcu)
-{
-       struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
-
-       /*
-        * If its an overlapping domain it has private groups, iterate and
-        * nuke them all.
-        */
-       if (sd->flags & SD_OVERLAP) {
-               free_sched_groups(sd->groups, 1);
-       } else if (atomic_dec_and_test(&sd->groups->ref)) {
-               kfree(sd->groups->sgp);
-               kfree(sd->groups);
-       }
-       kfree(sd);
-}
-
-static void destroy_sched_domain(struct sched_domain *sd, int cpu)
-{
-       call_rcu(&sd->rcu, free_sched_domain);
-}
-
-static void destroy_sched_domains(struct sched_domain *sd, int cpu)
-{
-       for (; sd; sd = sd->parent)
-               destroy_sched_domain(sd, cpu);
-}
-
-/*
- * Keep a special pointer to the highest sched_domain that has
- * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
- * allows us to avoid some pointer chasing select_idle_sibling().
- *
- * Also keep a unique ID per domain (we use the first cpu number in
- * the cpumask of the domain), this allows us to quickly tell if
- * two cpus are in the same cache domain, see cpus_share_cache().
- */
-DEFINE_PER_CPU(struct sched_domain *, sd_llc);
-DEFINE_PER_CPU(int, sd_llc_id);
-
-static void update_top_cache_domain(int cpu)
-{
-       struct sched_domain *sd;
-       int id = cpu;
-
-       sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
-       if (sd)
-               id = cpumask_first(sched_domain_span(sd));
-
-       rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
-       per_cpu(sd_llc_id, cpu) = id;
-}
-
-/*
- * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
- * hold the hotplug lock.
- */
-static void
-cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
-{
-       struct rq *rq = cpu_rq(cpu);
-       struct sched_domain *tmp;
-
-       /* Remove the sched domains which do not contribute to scheduling. */
-       for (tmp = sd; tmp; ) {
-               struct sched_domain *parent = tmp->parent;
-               if (!parent)
-                       break;
-
-               if (sd_parent_degenerate(tmp, parent)) {
-                       tmp->parent = parent->parent;
-                       if (parent->parent)
-                               parent->parent->child = tmp;
-                       destroy_sched_domain(parent, cpu);
-               } else
-                       tmp = tmp->parent;
-       }
-
-       if (sd && sd_degenerate(sd)) {
-               tmp = sd;
-               sd = sd->parent;
-               destroy_sched_domain(tmp, cpu);
-               if (sd)
-                       sd->child = NULL;
-       }
-
-       sched_domain_debug(sd, cpu);
-
-       rq_attach_root(rq, rd);
-       tmp = rq->sd;
-       rcu_assign_pointer(rq->sd, sd);
-       destroy_sched_domains(tmp, cpu);
-
-       update_top_cache_domain(cpu);
-}
-
-/* cpus with isolated domains */
-static cpumask_var_t cpu_isolated_map;
-
-/* Setup the mask of cpus configured for isolated domains */
-static int __init isolated_cpu_setup(char *str)
-{
-       alloc_bootmem_cpumask_var(&cpu_isolated_map);
-       cpulist_parse(str, cpu_isolated_map);
-       return 1;
-}
-
-__setup("isolcpus=", isolated_cpu_setup);
-
-static const struct cpumask *cpu_cpu_mask(int cpu)
-{
-       return cpumask_of_node(cpu_to_node(cpu));
-}
-
-struct sd_data {
-       struct sched_domain **__percpu sd;
-       struct sched_group **__percpu sg;
-       struct sched_group_power **__percpu sgp;
-};
-
-struct s_data {
-       struct sched_domain ** __percpu sd;
-       struct root_domain      *rd;
-};
-
-enum s_alloc {
-       sa_rootdomain,
-       sa_sd,
-       sa_sd_storage,
-       sa_none,
-};
-
-struct sched_domain_topology_level;
-
-typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
-typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
-
-#define SDTL_OVERLAP   0x01
-
-struct sched_domain_topology_level {
-       sched_domain_init_f init;
-       sched_domain_mask_f mask;
-       int                 flags;
-       int                 numa_level;
-       struct sd_data      data;
-};
-
-/*
- * Build an iteration mask that can exclude certain CPUs from the upwards
- * domain traversal.
- *
- * Asymmetric node setups can result in situations where the domain tree is of
- * unequal depth, make sure to skip domains that already cover the entire
- * range.
- *
- * In that case build_sched_domains() will have terminated the iteration early
- * and our sibling sd spans will be empty. Domains should always include the
- * cpu they're built on, so check that.
- *
- */
-static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
-{
-       const struct cpumask *span = sched_domain_span(sd);
-       struct sd_data *sdd = sd->private;
-       struct sched_domain *sibling;
-       int i;
-
-       for_each_cpu(i, span) {
-               sibling = *per_cpu_ptr(sdd->sd, i);
-               if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
-                       continue;
-
-               cpumask_set_cpu(i, sched_group_mask(sg));
-       }
-}
-
-/*
- * Return the canonical balance cpu for this group, this is the first cpu
- * of this group that's also in the iteration mask.
- */
-int group_balance_cpu(struct sched_group *sg)
-{
-       return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
-}
-
-static int
-build_overlap_sched_groups(struct sched_domain *sd, int cpu)
-{
-       struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
-       const struct cpumask *span = sched_domain_span(sd);
-       struct cpumask *covered = sched_domains_tmpmask;
-       struct sd_data *sdd = sd->private;
-       struct sched_domain *child;
-       int i;
-
-       cpumask_clear(covered);
-
-       for_each_cpu(i, span) {
-               struct cpumask *sg_span;
-
-               if (cpumask_test_cpu(i, covered))
-                       continue;
-
-               child = *per_cpu_ptr(sdd->sd, i);
-
-               /* See the comment near build_group_mask(). */
-               if (!cpumask_test_cpu(i, sched_domain_span(child)))
-                       continue;
-
-               sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
-                               GFP_KERNEL, cpu_to_node(cpu));
-
-               if (!sg)
-                       goto fail;
-
-               sg_span = sched_group_cpus(sg);
-               if (child->child) {
-                       child = child->child;
-                       cpumask_copy(sg_span, sched_domain_span(child));
-               } else
-                       cpumask_set_cpu(i, sg_span);
-
-               cpumask_or(covered, covered, sg_span);
-
-               sg->sgp = *per_cpu_ptr(sdd->sgp, i);
-               if (atomic_inc_return(&sg->sgp->ref) == 1)
-                       build_group_mask(sd, sg);
-
-               /*
-                * Initialize sgp->power such that even if we mess up the
-                * domains and no possible iteration will get us here, we won't
-                * die on a /0 trap.
-                */
-               sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
-
-               /*
-                * Make sure the first group of this domain contains the
-                * canonical balance cpu. Otherwise the sched_domain iteration
-                * breaks. See update_sg_lb_stats().
-                */
-               if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
-                   group_balance_cpu(sg) == cpu)
-                       groups = sg;
-
-               if (!first)
-                       first = sg;
-               if (last)
-                       last->next = sg;
-               last = sg;
-               last->next = first;
-       }
-       sd->groups = groups;
-
-       return 0;
-
-fail:
-       free_sched_groups(first, 0);
-
-       return -ENOMEM;
-}
-
-static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
-{
-       struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
-       struct sched_domain *child = sd->child;
-
-       if (child)
-               cpu = cpumask_first(sched_domain_span(child));
-
-       if (sg) {
-               *sg = *per_cpu_ptr(sdd->sg, cpu);
-               (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
-               atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
-       }
-
-       return cpu;
-}
-
-/*
- * build_sched_groups will build a circular linked list of the groups
- * covered by the given span, and will set each group's ->cpumask correctly,
- * and ->cpu_power to 0.
- *
- * Assumes the sched_domain tree is fully constructed
- */
-static int
-build_sched_groups(struct sched_domain *sd, int cpu)
-{
-       struct sched_group *first = NULL, *last = NULL;
-       struct sd_data *sdd = sd->private;
-       const struct cpumask *span = sched_domain_span(sd);
-       struct cpumask *covered;
-       int i;
-
-       get_group(cpu, sdd, &sd->groups);
-       atomic_inc(&sd->groups->ref);
-
-       if (cpu != cpumask_first(sched_domain_span(sd)))
-               return 0;
-
-       lockdep_assert_held(&sched_domains_mutex);
-       covered = sched_domains_tmpmask;
-
-       cpumask_clear(covered);
-
-       for_each_cpu(i, span) {
-               struct sched_group *sg;
-               int group = get_group(i, sdd, &sg);
-               int j;
-
-               if (cpumask_test_cpu(i, covered))
-                       continue;
-
-               cpumask_clear(sched_group_cpus(sg));
-               sg->sgp->power = 0;
-               cpumask_setall(sched_group_mask(sg));
-
-               for_each_cpu(j, span) {
-                       if (get_group(j, sdd, NULL) != group)
-                               continue;
-
-                       cpumask_set_cpu(j, covered);
-                       cpumask_set_cpu(j, sched_group_cpus(sg));
-               }
-
-               if (!first)
-                       first = sg;
-               if (last)
-                       last->next = sg;
-               last = sg;
-       }
-       last->next = first;
-
-       return 0;
-}
-
-/*
- * Initialize sched groups cpu_power.
- *
- * cpu_power indicates the capacity of sched group, which is used while
- * distributing the load between different sched groups in a sched domain.
- * Typically cpu_power for all the groups in a sched domain will be same unless
- * there are asymmetries in the topology. If there are asymmetries, group
- * having more cpu_power will pickup more load compared to the group having
- * less cpu_power.
- */
-static void init_sched_groups_power(int cpu, struct sched_domain *sd)
-{
-       struct sched_group *sg = sd->groups;
-
-       WARN_ON(!sd || !sg);
-
-       do {
-               sg->group_weight = cpumask_weight(sched_group_cpus(sg));
-               sg = sg->next;
-       } while (sg != sd->groups);
-
-       if (cpu != group_balance_cpu(sg))
-               return;
-
-       update_group_power(sd, cpu);
-       atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
-}
-
-int __weak arch_sd_sibling_asym_packing(void)
-{
-       return 0*SD_ASYM_PACKING;
-}
-
-/*
- * Initializers for schedule domains
- * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
- */
-
-#ifdef CONFIG_SCHED_DEBUG
-# define SD_INIT_NAME(sd, type)                sd->name = #type
-#else
-# define SD_INIT_NAME(sd, type)                do { } while (0)
-#endif
-
-#define SD_INIT_FUNC(type)                                             \
-static noinline struct sched_domain *                                  \
-sd_init_##type(struct sched_domain_topology_level *tl, int cpu)        \
-{                                                                      \
-       struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);       \
-       *sd = SD_##type##_INIT;                                         \
-       SD_INIT_NAME(sd, type);                                         \
-       sd->private = &tl->data;                                        \
-       return sd;                                                      \
-}
-
-SD_INIT_FUNC(CPU)
-#ifdef CONFIG_SCHED_SMT
- SD_INIT_FUNC(SIBLING)
-#endif
-#ifdef CONFIG_SCHED_MC
- SD_INIT_FUNC(MC)
-#endif
-#ifdef CONFIG_SCHED_BOOK
- SD_INIT_FUNC(BOOK)
-#endif
-
-static int default_relax_domain_level = -1;
-int sched_domain_level_max;
-
-static int __init setup_relax_domain_level(char *str)
-{
-       if (kstrtoint(str, 0, &default_relax_domain_level))
-               pr_warn("Unable to set relax_domain_level\n");
-
-       return 1;
-}
-__setup("relax_domain_level=", setup_relax_domain_level);
-
-static void set_domain_attribute(struct sched_domain *sd,
-                                struct sched_domain_attr *attr)
-{
-       int request;
-
-       if (!attr || attr->relax_domain_level < 0) {
-               if (default_relax_domain_level < 0)
-                       return;
-               else
-                       request = default_relax_domain_level;
-       } else
-               request = attr->relax_domain_level;
-       if (request < sd->level) {
-               /* turn off idle balance on this domain */
-               sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
-       } else {
-               /* turn on idle balance on this domain */
-               sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
-       }
-}
-
-static void __sdt_free(const struct cpumask *cpu_map);
-static int __sdt_alloc(const struct cpumask *cpu_map);
-
-static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
-                                const struct cpumask *cpu_map)
-{
-       switch (what) {
-       case sa_rootdomain:
-               if (!atomic_read(&d->rd->refcount))
-                       free_rootdomain(&d->rd->rcu); /* fall through */
-       case sa_sd:
-               free_percpu(d->sd); /* fall through */
-       case sa_sd_storage:
-               __sdt_free(cpu_map); /* fall through */
-       case sa_none:
-               break;
-       }
-}
-
-static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
-                                                  const struct cpumask *cpu_map)
-{
-       memset(d, 0, sizeof(*d));
-
-       if (__sdt_alloc(cpu_map))
-               return sa_sd_storage;
-       d->sd = alloc_percpu(struct sched_domain *);
-       if (!d->sd)
-               return sa_sd_storage;
-       d->rd = alloc_rootdomain();
-       if (!d->rd)
-               return sa_sd;
-       return sa_rootdomain;
-}
-
-/*
- * NULL the sd_data elements we've used to build the sched_domain and
- * sched_group structure so that the subsequent __free_domain_allocs()
- * will not free the data we're using.
- */
-static void claim_allocations(int cpu, struct sched_domain *sd)
-{
-       struct sd_data *sdd = sd->private;
-
-       WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
-       *per_cpu_ptr(sdd->sd, cpu) = NULL;
-
-       if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
-               *per_cpu_ptr(sdd->sg, cpu) = NULL;
-
-       if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
-               *per_cpu_ptr(sdd->sgp, cpu) = NULL;
-}
-
-#ifdef CONFIG_SCHED_SMT
-static const struct cpumask *cpu_smt_mask(int cpu)
-{
-       return topology_thread_cpumask(cpu);
-}
-#endif
-
-/*
- * Topology list, bottom-up.
- */
-static struct sched_domain_topology_level default_topology[] = {
-#ifdef CONFIG_SCHED_SMT
-       { sd_init_SIBLING, cpu_smt_mask, },
-#endif
-#ifdef CONFIG_SCHED_MC
-       { sd_init_MC, cpu_coregroup_mask, },
-#endif
-#ifdef CONFIG_SCHED_BOOK
-       { sd_init_BOOK, cpu_book_mask, },
-#endif
-       { sd_init_CPU, cpu_cpu_mask, },
-       { NULL, },
-};
-
-static struct sched_domain_topology_level *sched_domain_topology = default_topology;
-
-#ifdef CONFIG_NUMA
-
-static int sched_domains_numa_levels;
-static int *sched_domains_numa_distance;
-static struct cpumask ***sched_domains_numa_masks;
-static int sched_domains_curr_level;
-
-static inline int sd_local_flags(int level)
-{
-       if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
-               return 0;
-
-       return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
-}
-
-static struct sched_domain *
-sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
-{
-       struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
-       int level = tl->numa_level;
-       int sd_weight = cpumask_weight(
-                       sched_domains_numa_masks[level][cpu_to_node(cpu)]);
-
-       *sd = (struct sched_domain){
-               .min_interval           = sd_weight,
-               .max_interval           = 2*sd_weight,
-               .busy_factor            = 32,
-               .imbalance_pct          = 125,
-               .cache_nice_tries       = 2,
-               .busy_idx               = 3,
-               .idle_idx               = 2,
-               .newidle_idx            = 0,
-               .wake_idx               = 0,
-               .forkexec_idx           = 0,
-
-               .flags                  = 1*SD_LOAD_BALANCE
-                                       | 1*SD_BALANCE_NEWIDLE
-                                       | 0*SD_BALANCE_EXEC
-                                       | 0*SD_BALANCE_FORK
-                                       | 0*SD_BALANCE_WAKE
-                                       | 0*SD_WAKE_AFFINE
-                                       | 0*SD_SHARE_CPUPOWER
-                                       | 0*SD_SHARE_PKG_RESOURCES
-                                       | 1*SD_SERIALIZE
-                                       | 0*SD_PREFER_SIBLING
-                                       | sd_local_flags(level)
-                                       ,
-               .last_balance           = jiffies,
-               .balance_interval       = sd_weight,
-       };
-       SD_INIT_NAME(sd, NUMA);
-       sd->private = &tl->data;
-
-       /*
-        * Ugly hack to pass state to sd_numa_mask()...
-        */
-       sched_domains_curr_level = tl->numa_level;
-
-       return sd;
-}
-
-static const struct cpumask *sd_numa_mask(int cpu)
-{
-       return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
-}
-
-static void sched_numa_warn(const char *str)
-{
-       static int done = false;
-       int i,j;
-
-       if (done)
-               return;
-
-       done = true;
-
-       printk(KERN_WARNING "ERROR: %s\n\n", str);
-
-       for (i = 0; i < nr_node_ids; i++) {
-               printk(KERN_WARNING "  ");
-               for (j = 0; j < nr_node_ids; j++)
-                       printk(KERN_CONT "%02d ", node_distance(i,j));
-               printk(KERN_CONT "\n");
-       }
-       printk(KERN_WARNING "\n");
-}
-
-static bool find_numa_distance(int distance)
-{
-       int i;
-
-       if (distance == node_distance(0, 0))
-               return true;
-
-       for (i = 0; i < sched_domains_numa_levels; i++) {
-               if (sched_domains_numa_distance[i] == distance)
-                       return true;
-       }
-
-       return false;
-}
-
-static void sched_init_numa(void)
-{
-       int next_distance, curr_distance = node_distance(0, 0);
-       struct sched_domain_topology_level *tl;
-       int level = 0;
-       int i, j, k;
-
-       sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
-       if (!sched_domains_numa_distance)
-               return;
-
-       /*
-        * O(nr_nodes^2) deduplicating selection sort -- in order to find the
-        * unique distances in the node_distance() table.
-        *
-        * Assumes node_distance(0,j) includes all distances in
-        * node_distance(i,j) in order to avoid cubic time.
-        */
-       next_distance = curr_distance;
-       for (i = 0; i < nr_node_ids; i++) {
-               for (j = 0; j < nr_node_ids; j++) {
-                       for (k = 0; k < nr_node_ids; k++) {
-                               int distance = node_distance(i, k);
-
-                               if (distance > curr_distance &&
-                                   (distance < next_distance ||
-                                    next_distance == curr_distance))
-                                       next_distance = distance;
-
-                               /*
-                                * While not a strong assumption it would be nice to know
-                                * about cases where if node A is connected to B, B is not
-                                * equally connected to A.
-                                */
-                               if (sched_debug() && node_distance(k, i) != distance)
-                                       sched_numa_warn("Node-distance not symmetric");
-
-                               if (sched_debug() && i && !find_numa_distance(distance))
-                                       sched_numa_warn("Node-0 not representative");
-                       }
-                       if (next_distance != curr_distance) {
-                               sched_domains_numa_distance[level++] = next_distance;
-                               sched_domains_numa_levels = level;
-                               curr_distance = next_distance;
-                       } else break;
-               }
-
-               /*
-                * In case of sched_debug() we verify the above assumption.
-                */
-               if (!sched_debug())
-                       break;
-       }
-       /*
-        * 'level' contains the number of unique distances, excluding the
-        * identity distance node_distance(i,i).
-        *
-        * The sched_domains_nume_distance[] array includes the actual distance
-        * numbers.
-        */
-
-       /*
-        * Here, we should temporarily reset sched_domains_numa_levels to 0.
-        * If it fails to allocate memory for array sched_domains_numa_masks[][],
-        * the array will contain less then 'level' members. This could be
-        * dangerous when we use it to iterate array sched_domains_numa_masks[][]
-        * in other functions.
-        *
-        * We reset it to 'level' at the end of this function.
-        */
-       sched_domains_numa_levels = 0;
-
-       sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
-       if (!sched_domains_numa_masks)
-               return;
-
-       /*
-        * Now for each level, construct a mask per node which contains all
-        * cpus of nodes that are that many hops away from us.
-        */
-       for (i = 0; i < level; i++) {
-               sched_domains_numa_masks[i] =
-                       kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
-               if (!sched_domains_numa_masks[i])
-                       return;
-
-               for (j = 0; j < nr_node_ids; j++) {
-                       struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
-                       if (!mask)
-                               return;
-
-                       sched_domains_numa_masks[i][j] = mask;
-
-                       for (k = 0; k < nr_node_ids; k++) {
-                               if (node_distance(j, k) > sched_domains_numa_distance[i])
-                                       continue;
-
-                               cpumask_or(mask, mask, cpumask_of_node(k));
-                       }
-               }
-       }
-
-       tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
-                       sizeof(struct sched_domain_topology_level), GFP_KERNEL);
-       if (!tl)
-               return;
-
-       /*
-        * Copy the default topology bits..
-        */
-       for (i = 0; default_topology[i].init; i++)
-               tl[i] = default_topology[i];
-
-       /*
-        * .. and append 'j' levels of NUMA goodness.
-        */
-       for (j = 0; j < level; i++, j++) {
-               tl[i] = (struct sched_domain_topology_level){
-                       .init = sd_numa_init,
-                       .mask = sd_numa_mask,
-                       .flags = SDTL_OVERLAP,
-                       .numa_level = j,
-               };
-       }
-
-       sched_domain_topology = tl;
-
-       sched_domains_numa_levels = level;
-}
-
-static void sched_domains_numa_masks_set(int cpu)
-{
-       int i, j;
-       int node = cpu_to_node(cpu);
-
-       for (i = 0; i < sched_domains_numa_levels; i++) {
-               for (j = 0; j < nr_node_ids; j++) {
-                       if (node_distance(j, node) <= sched_domains_numa_distance[i])
-                               cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
-               }
-       }
-}
-
-static void sched_domains_numa_masks_clear(int cpu)
-{
-       int i, j;
-       for (i = 0; i < sched_domains_numa_levels; i++) {
-               for (j = 0; j < nr_node_ids; j++)
-                       cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
-       }
-}
-
-/*
- * Update sched_domains_numa_masks[level][node] array when new cpus
- * are onlined.
- */
-static int sched_domains_numa_masks_update(struct notifier_block *nfb,
-                                          unsigned long action,
-                                          void *hcpu)
-{
-       int cpu = (long)hcpu;
-
-       switch (action & ~CPU_TASKS_FROZEN) {
-       case CPU_ONLINE:
-               sched_domains_numa_masks_set(cpu);
-               break;
-
-       case CPU_DEAD:
-               sched_domains_numa_masks_clear(cpu);
-               break;
-
-       default:
-               return NOTIFY_DONE;
-       }
-
-       return NOTIFY_OK;
-}
-#else
-static inline void sched_init_numa(void)
-{
-}
-
-static int sched_domains_numa_masks_update(struct notifier_block *nfb,
-                                          unsigned long action,
-                                          void *hcpu)
-{
-       return 0;
-}
-#endif /* CONFIG_NUMA */
-
-static int __sdt_alloc(const struct cpumask *cpu_map)
-{
-       struct sched_domain_topology_level *tl;
-       int j;
-
-       for (tl = sched_domain_topology; tl->init; tl++) {
-               struct sd_data *sdd = &tl->data;
-
-               sdd->sd = alloc_percpu(struct sched_domain *);
-               if (!sdd->sd)
-                       return -ENOMEM;
-
-               sdd->sg = alloc_percpu(struct sched_group *);
-               if (!sdd->sg)
-                       return -ENOMEM;
-
-               sdd->sgp = alloc_percpu(struct sched_group_power *);
-               if (!sdd->sgp)
-                       return -ENOMEM;
-
-               for_each_cpu(j, cpu_map) {
-                       struct sched_domain *sd;
-                       struct sched_group *sg;
-                       struct sched_group_power *sgp;
-
-                       sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
-                                       GFP_KERNEL, cpu_to_node(j));
-                       if (!sd)
-                               return -ENOMEM;
-
-                       *per_cpu_ptr(sdd->sd, j) = sd;
-
-                       sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
-                                       GFP_KERNEL, cpu_to_node(j));
-                       if (!sg)
-                               return -ENOMEM;
-
-                       sg->next = sg;
-
-                       *per_cpu_ptr(sdd->sg, j) = sg;
-
-                       sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
-                                       GFP_KERNEL, cpu_to_node(j));
-                       if (!sgp)
-                               return -ENOMEM;
-
-                       *per_cpu_ptr(sdd->sgp, j) = sgp;
-               }
-       }
-
-       return 0;
-}
-
-static void __sdt_free(const struct cpumask *cpu_map)
-{
-       struct sched_domain_topology_level *tl;
-       int j;
-
-       for (tl = sched_domain_topology; tl->init; tl++) {
-               struct sd_data *sdd = &tl->data;
-
-               for_each_cpu(j, cpu_map) {
-                       struct sched_domain *sd;
-
-                       if (sdd->sd) {
-                               sd = *per_cpu_ptr(sdd->sd, j);
-                               if (sd && (sd->flags & SD_OVERLAP))
-                                       free_sched_groups(sd->groups, 0);
-                               kfree(*per_cpu_ptr(sdd->sd, j));
-                       }
-
-                       if (sdd->sg)
-                               kfree(*per_cpu_ptr(sdd->sg, j));
-                       if (sdd->sgp)
-                               kfree(*per_cpu_ptr(sdd->sgp, j));
-               }
-               free_percpu(sdd->sd);
-               sdd->sd = NULL;
-               free_percpu(sdd->sg);
-               sdd->sg = NULL;
-               free_percpu(sdd->sgp);
-               sdd->sgp = NULL;
-       }
-}
-
-struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
-               struct s_data *d, const struct cpumask *cpu_map,
-               struct sched_domain_attr *attr, struct sched_domain *child,
-               int cpu)
-{
-       struct sched_domain *sd = tl->init(tl, cpu);
-       if (!sd)
-               return child;
-
-       cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
-       if (child) {
-               sd->level = child->level + 1;
-               sched_domain_level_max = max(sched_domain_level_max, sd->level);
-               child->parent = sd;
-       }
-       sd->child = child;
-       set_domain_attribute(sd, attr);
-
-       return sd;
-}
-
-/*
- * Build sched domains for a given set of cpus and attach the sched domains
- * to the individual cpus
- */
-static int build_sched_domains(const struct cpumask *cpu_map,
-                              struct sched_domain_attr *attr)
-{
-       enum s_alloc alloc_state = sa_none;
-       struct sched_domain *sd;
-       struct s_data d;
-       int i, ret = -ENOMEM;
-
-       alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
-       if (alloc_state != sa_rootdomain)
-               goto error;
-
-       /* Set up domains for cpus specified by the cpu_map. */
-       for_each_cpu(i, cpu_map) {
-               struct sched_domain_topology_level *tl;
-
-               sd = NULL;
-               for (tl = sched_domain_topology; tl->init; tl++) {
-                       sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
-                       if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
-                               sd->flags |= SD_OVERLAP;
-                       if (cpumask_equal(cpu_map, sched_domain_span(sd)))
-                               break;
-               }
-
-               while (sd->child)
-                       sd = sd->child;
-
-               *per_cpu_ptr(d.sd, i) = sd;
-       }
-
-       /* Build the groups for the domains */
-       for_each_cpu(i, cpu_map) {
-               for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
-                       sd->span_weight = cpumask_weight(sched_domain_span(sd));
-                       if (sd->flags & SD_OVERLAP) {
-                               if (build_overlap_sched_groups(sd, i))
-                                       goto error;
-                       } else {
-                               if (build_sched_groups(sd, i))
-                                       goto error;
-                       }
-               }
-       }
-
-       /* Calculate CPU power for physical packages and nodes */
-       for (i = nr_cpumask_bits-1; i >= 0; i--) {
-               if (!cpumask_test_cpu(i, cpu_map))
-                       continue;
-
-               for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
-                       claim_allocations(i, sd);
-                       init_sched_groups_power(i, sd);
-               }
-       }
-
-       /* Attach the domains */
-       rcu_read_lock();
-       for_each_cpu(i, cpu_map) {
-               sd = *per_cpu_ptr(d.sd, i);
-               cpu_attach_domain(sd, d.rd, i);
-       }
-       rcu_read_unlock();
-
-       ret = 0;
-error:
-       __free_domain_allocs(&d, alloc_state, cpu_map);
-       return ret;
-}
-
-static cpumask_var_t *doms_cur;        /* current sched domains */
-static int ndoms_cur;          /* number of sched domains in 'doms_cur' */
-static struct sched_domain_attr *dattr_cur;
-                               /* attribues of custom domains in 'doms_cur' */
-
-/*
- * Special case: If a kmalloc of a doms_cur partition (array of
- * cpumask) fails, then fallback to a single sched domain,
- * as determined by the single cpumask fallback_doms.
- */
-static cpumask_var_t fallback_doms;
-
-/*
- * arch_update_cpu_topology lets virtualized architectures update the
- * cpu core maps. It is supposed to return 1 if the topology changed
- * or 0 if it stayed the same.
- */
-int __attribute__((weak)) arch_update_cpu_topology(void)
-{
-       return 0;
-}
-
-cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
-{
-       int i;
-       cpumask_var_t *doms;
-
-       doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
-       if (!doms)
-               return NULL;
-       for (i = 0; i < ndoms; i++) {
-               if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
-                       free_sched_domains(doms, i);
-                       return NULL;
-               }
-       }
-       return doms;
-}
-
-void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
-{
-       unsigned int i;
-       for (i = 0; i < ndoms; i++)
-               free_cpumask_var(doms[i]);
-       kfree(doms);
-}
-
-/*
- * Set up scheduler domains and groups. Callers must hold the hotplug lock.
- * For now this just excludes isolated cpus, but could be used to
- * exclude other special cases in the future.
- */
-static int init_sched_domains(const struct cpumask *cpu_map)
-{
-       int err;
-
-       arch_update_cpu_topology();
-       ndoms_cur = 1;
-       doms_cur = alloc_sched_domains(ndoms_cur);
-       if (!doms_cur)
-               doms_cur = &fallback_doms;
-       cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
-       err = build_sched_domains(doms_cur[0], NULL);
-       register_sched_domain_sysctl();
-
-       return err;
-}
-
-/*
- * Detach sched domains from a group of cpus specified in cpu_map
- * These cpus will now be attached to the NULL domain
- */
-static void detach_destroy_domains(const struct cpumask *cpu_map)
-{
-       int i;
-
-       rcu_read_lock();
-       for_each_cpu(i, cpu_map)
-               cpu_attach_domain(NULL, &def_root_domain, i);
-       rcu_read_unlock();
-}
-
-/* handle null as "default" */
-static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
-                       struct sched_domain_attr *new, int idx_new)
-{
-       struct sched_domain_attr tmp;
-
-       /* fast path */
-       if (!new && !cur)
-               return 1;
-
-       tmp = SD_ATTR_INIT;
-       return !memcmp(cur ? (cur + idx_cur) : &tmp,
-                       new ? (new + idx_new) : &tmp,
-                       sizeof(struct sched_domain_attr));
-}
-
-/*
- * Partition sched domains as specified by the 'ndoms_new'
- * cpumasks in the array doms_new[] of cpumasks. This compares
- * doms_new[] to the current sched domain partitioning, doms_cur[].
- * It destroys each deleted domain and builds each new domain.
- *
- * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
- * The masks don't intersect (don't overlap.) We should setup one
- * sched domain for each mask. CPUs not in any of the cpumasks will
- * not be load balanced. If the same cpumask appears both in the
- * current 'doms_cur' domains and in the new 'doms_new', we can leave
- * it as it is.
- *
- * The passed in 'doms_new' should be allocated using
- * alloc_sched_domains.  This routine takes ownership of it and will
- * free_sched_domains it when done with it. If the caller failed the
- * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
- * and partition_sched_domains() will fallback to the single partition
- * 'fallback_doms', it also forces the domains to be rebuilt.
- *
- * If doms_new == NULL it will be replaced with cpu_online_mask.
- * ndoms_new == 0 is a special case for destroying existing domains,
- * and it will not create the default domain.
- *
- * Call with hotplug lock held
- */
-void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
-                            struct sched_domain_attr *dattr_new)
-{
-       int i, j, n;
-       int new_topology;
-
-       mutex_lock(&sched_domains_mutex);
-
-       /* always unregister in case we don't destroy any domains */
-       unregister_sched_domain_sysctl();
-
-       /* Let architecture update cpu core mappings. */
-       new_topology = arch_update_cpu_topology();
-
-       n = doms_new ? ndoms_new : 0;
-
-       /* Destroy deleted domains */
-       for (i = 0; i < ndoms_cur; i++) {
-               for (j = 0; j < n && !new_topology; j++) {
-                       if (cpumask_equal(doms_cur[i], doms_new[j])
-                           && dattrs_equal(dattr_cur, i, dattr_new, j))
-                               goto match1;
-               }
-               /* no match - a current sched domain not in new doms_new[] */
-               detach_destroy_domains(doms_cur[i]);
-match1:
-               ;
-       }
-
-       if (doms_new == NULL) {
-               ndoms_cur = 0;
-               doms_new = &fallback_doms;
-               cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
-               WARN_ON_ONCE(dattr_new);
-       }
-
-       /* Build new domains */
-       for (i = 0; i < ndoms_new; i++) {
-               for (j = 0; j < ndoms_cur && !new_topology; j++) {
-                       if (cpumask_equal(doms_new[i], doms_cur[j])
-                           && dattrs_equal(dattr_new, i, dattr_cur, j))
-                               goto match2;
-               }
-               /* no match - add a new doms_new */
-               build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
-match2:
-               ;
-       }
-
-       /* Remember the new sched domains */
-       if (doms_cur != &fallback_doms)
-               free_sched_domains(doms_cur, ndoms_cur);
-       kfree(dattr_cur);       /* kfree(NULL) is safe */
-       doms_cur = doms_new;
-       dattr_cur = dattr_new;
-       ndoms_cur = ndoms_new;
-
-       register_sched_domain_sysctl();
-
-       mutex_unlock(&sched_domains_mutex);
-}
-
-static int num_cpus_frozen;    /* used to mark begin/end of suspend/resume */
-
-/*
- * Update cpusets according to cpu_active mask.  If cpusets are
- * disabled, cpuset_update_active_cpus() becomes a simple wrapper
- * around partition_sched_domains().
- *
- * If we come here as part of a suspend/resume, don't touch cpusets because we
- * want to restore it back to its original state upon resume anyway.
- */
-static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
-                            void *hcpu)
-{
-       switch (action) {
-       case CPU_ONLINE_FROZEN:
-       case CPU_DOWN_FAILED_FROZEN:
-
-               /*
-                * num_cpus_frozen tracks how many CPUs are involved in suspend
-                * resume sequence. As long as this is not the last online
-                * operation in the resume sequence, just build a single sched
-                * domain, ignoring cpusets.
-                */
-               num_cpus_frozen--;
-               if (likely(num_cpus_frozen)) {
-                       partition_sched_domains(1, NULL, NULL);
-                       break;
-               }
-
-               /*
-                * This is the last CPU online operation. So fall through and
-                * restore the original sched domains by considering the
-                * cpuset configurations.
-                */
-
-       case CPU_ONLINE:
-       case CPU_DOWN_FAILED:
-               cpuset_update_active_cpus(true);
-               break;
-       default:
-               return NOTIFY_DONE;
-       }
-       return NOTIFY_OK;
-}
-
-static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
-                              void *hcpu)
-{
-       switch (action) {
-       case CPU_DOWN_PREPARE:
-               cpuset_update_active_cpus(false);
-               break;
-       case CPU_DOWN_PREPARE_FROZEN:
-               num_cpus_frozen++;
-               partition_sched_domains(1, NULL, NULL);
-               break;
-       default:
-               return NOTIFY_DONE;
-       }
-       return NOTIFY_OK;
-}
-
-void __init sched_init_smp(void)
-{
-       cpumask_var_t non_isolated_cpus;
-
-       alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
-       alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
-
-       sched_init_numa();
-
-       get_online_cpus();
-       mutex_lock(&sched_domains_mutex);
-       init_sched_domains(cpu_active_mask);
-       cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
-       if (cpumask_empty(non_isolated_cpus))
-               cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
-       mutex_unlock(&sched_domains_mutex);
-       put_online_cpus();
-
-       hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
-       hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
-       hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
-
-       /* RT runtime code needs to handle some hotplug events */
-       hotcpu_notifier(update_runtime, 0);
-
-       init_hrtick();
-
-       /* Move init over to a non-isolated CPU */
-       if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
-               BUG();
-       sched_init_granularity();
-       free_cpumask_var(non_isolated_cpus);
-
-       init_sched_rt_class();
-}
-#else
-void __init sched_init_smp(void)
-{
-       sched_init_granularity();
-}
-#endif /* CONFIG_SMP */
-
-const_debug unsigned int sysctl_timer_migration = 1;
-
-int in_sched_functions(unsigned long addr)
-{
-       return in_lock_functions(addr) ||
-               (addr >= (unsigned long)__sched_text_start
-               && addr < (unsigned long)__sched_text_end);
-}
-
-#ifdef CONFIG_CGROUP_SCHED
-struct task_group root_task_group;
-LIST_HEAD(task_groups);
-#endif
-
-DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
-
-void __init sched_init(void)
-{
-       int i, j;
-       unsigned long alloc_size = 0, ptr;
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-       alloc_size += 2 * nr_cpu_ids * sizeof(void **);
-#endif
-#ifdef CONFIG_RT_GROUP_SCHED
-       alloc_size += 2 * nr_cpu_ids * sizeof(void **);
-#endif
-#ifdef CONFIG_CPUMASK_OFFSTACK
-       alloc_size += num_possible_cpus() * cpumask_size();
-#endif
-       if (alloc_size) {
-               ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-               root_task_group.se = (struct sched_entity **)ptr;
-               ptr += nr_cpu_ids * sizeof(void **);
-
-               root_task_group.cfs_rq = (struct cfs_rq **)ptr;
-               ptr += nr_cpu_ids * sizeof(void **);
-
-#endif /* CONFIG_FAIR_GROUP_SCHED */
-#ifdef CONFIG_RT_GROUP_SCHED
-               root_task_group.rt_se = (struct sched_rt_entity **)ptr;
-               ptr += nr_cpu_ids * sizeof(void **);
-
-               root_task_group.rt_rq = (struct rt_rq **)ptr;
-               ptr += nr_cpu_ids * sizeof(void **);
-
-#endif /* CONFIG_RT_GROUP_SCHED */
-#ifdef CONFIG_CPUMASK_OFFSTACK
-               for_each_possible_cpu(i) {
-                       per_cpu(load_balance_tmpmask, i) = (void *)ptr;
-                       ptr += cpumask_size();
-               }
-#endif /* CONFIG_CPUMASK_OFFSTACK */
-       }
-
-#ifdef CONFIG_SMP
-       init_defrootdomain();
-#endif
-
-       init_rt_bandwidth(&def_rt_bandwidth,
-                       global_rt_period(), global_rt_runtime());
-
-#ifdef CONFIG_RT_GROUP_SCHED
-       init_rt_bandwidth(&root_task_group.rt_bandwidth,
-                       global_rt_period(), global_rt_runtime());
-#endif /* CONFIG_RT_GROUP_SCHED */
-
-#ifdef CONFIG_CGROUP_SCHED
-       list_add(&root_task_group.list, &task_groups);
-       INIT_LIST_HEAD(&root_task_group.children);
-       INIT_LIST_HEAD(&root_task_group.siblings);
-       autogroup_init(&init_task);
-
-#endif /* CONFIG_CGROUP_SCHED */
-
-#ifdef CONFIG_CGROUP_CPUACCT
-       root_cpuacct.cpustat = &kernel_cpustat;
-       root_cpuacct.cpuusage = alloc_percpu(u64);
-       /* Too early, not expected to fail */
-       BUG_ON(!root_cpuacct.cpuusage);
-#endif
-       for_each_possible_cpu(i) {
-               struct rq *rq;
-
-               rq = cpu_rq(i);
-               raw_spin_lock_init(&rq->lock);
-               rq->nr_running = 0;
-               rq->calc_load_active = 0;
-               rq->calc_load_update = jiffies + LOAD_FREQ;
-               init_cfs_rq(&rq->cfs);
-               init_rt_rq(&rq->rt, rq);
-#ifdef CONFIG_FAIR_GROUP_SCHED
-               root_task_group.shares = ROOT_TASK_GROUP_LOAD;
-               INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
-               /*
-                * How much cpu bandwidth does root_task_group get?
-                *
-                * In case of task-groups formed thr' the cgroup filesystem, it
-                * gets 100% of the cpu resources in the system. This overall
-                * system cpu resource is divided among the tasks of
-                * root_task_group and its child task-groups in a fair manner,
-                * based on each entity's (task or task-group's) weight
-                * (se->load.weight).
-                *
-                * In other words, if root_task_group has 10 tasks of weight
-                * 1024) and two child groups A0 and A1 (of weight 1024 each),
-                * then A0's share of the cpu resource is:
-                *
-                *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
-                *
-                * We achieve this by letting root_task_group's tasks sit
-                * directly in rq->cfs (i.e root_task_group->se[] = NULL).
-                */
-               init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
-               init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
-#endif /* CONFIG_FAIR_GROUP_SCHED */
-
-               rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
-#ifdef CONFIG_RT_GROUP_SCHED
-               INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
-               init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
-#endif
-
-               for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
-                       rq->cpu_load[j] = 0;
-
-               rq->last_load_update_tick = jiffies;
-
-#ifdef CONFIG_SMP
-               rq->sd = NULL;
-               rq->rd = NULL;
-               rq->cpu_power = SCHED_POWER_SCALE;
-               rq->post_schedule = 0;
-               rq->active_balance = 0;
-               rq->next_balance = jiffies;
-               rq->push_cpu = 0;
-               rq->cpu = i;
-               rq->online = 0;
-               rq->idle_stamp = 0;
-               rq->avg_idle = 2*sysctl_sched_migration_cost;
-
-               INIT_LIST_HEAD(&rq->cfs_tasks);
-
-               rq_attach_root(rq, &def_root_domain);
-#ifdef CONFIG_NO_HZ
-               rq->nohz_flags = 0;
-#endif
-#endif
-               init_rq_hrtick(rq);
-               atomic_set(&rq->nr_iowait, 0);
-       }
-
-       set_load_weight(&init_task);
-
-#ifdef CONFIG_PREEMPT_NOTIFIERS
-       INIT_HLIST_HEAD(&init_task.preempt_notifiers);
-#endif
-
-#ifdef CONFIG_RT_MUTEXES
-       plist_head_init(&init_task.pi_waiters);
-#endif
-
-       /*
-        * The boot idle thread does lazy MMU switching as well:
-        */
-       atomic_inc(&init_mm.mm_count);
-       enter_lazy_tlb(&init_mm, current);
-
-       /*
-        * Make us the idle thread. Technically, schedule() should not be
-        * called from this thread, however somewhere below it might be,
-        * but because we are the idle thread, we just pick up running again
-        * when this runqueue becomes "idle".
-        */
-       init_idle(current, smp_processor_id());
-
-       calc_load_update = jiffies + LOAD_FREQ;
-
-       /*
-        * During early bootup we pretend to be a normal task:
-        */
-       current->sched_class = &fair_sched_class;
-
-#ifdef CONFIG_SMP
-       zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
-       /* May be allocated at isolcpus cmdline parse time */
-       if (cpu_isolated_map == NULL)
-               zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
-       idle_thread_set_boot_cpu();
-#endif
-       init_sched_fair_class();
-
-       scheduler_running = 1;
-}
-
-#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
-static inline int preempt_count_equals(int preempt_offset)
-{
-       int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
-
-       return (nested == preempt_offset);
-}
-
-void __might_sleep(const char *file, int line, int preempt_offset)
-{
-       static unsigned long prev_jiffy;        /* ratelimiting */
-
-       rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
-       if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
-           system_state != SYSTEM_RUNNING || oops_in_progress)
-               return;
-       if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
-               return;
-       prev_jiffy = jiffies;
-
-       printk(KERN_ERR
-               "BUG: sleeping function called from invalid context at %s:%d\n",
-                       file, line);
-       printk(KERN_ERR
-               "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
-                       in_atomic(), irqs_disabled(),
-                       current->pid, current->comm);
-
-       debug_show_held_locks(current);
-       if (irqs_disabled())
-               print_irqtrace_events(current);
-       dump_stack();
-}
-EXPORT_SYMBOL(__might_sleep);
-#endif
-
-#ifdef CONFIG_MAGIC_SYSRQ
-static void normalize_task(struct rq *rq, struct task_struct *p)
-{
-       const struct sched_class *prev_class = p->sched_class;
-       int old_prio = p->prio;
-       int on_rq;
-
-       on_rq = p->on_rq;
-       if (on_rq)
-               dequeue_task(rq, p, 0);
-       __setscheduler(rq, p, SCHED_NORMAL, 0);
-       if (on_rq) {
-               enqueue_task(rq, p, 0);
-               resched_task(rq->curr);
-       }
-
-       check_class_changed(rq, p, prev_class, old_prio);
-}
-
-void normalize_rt_tasks(void)
-{
-       struct task_struct *g, *p;
-       unsigned long flags;
-       struct rq *rq;
-
-       read_lock_irqsave(&tasklist_lock, flags);
-       do_each_thread(g, p) {
-               /*
-                * Only normalize user tasks:
-                */
-               if (!p->mm)
-                       continue;
-
-               p->se.exec_start                = 0;
-#ifdef CONFIG_SCHEDSTATS
-               p->se.statistics.wait_start     = 0;
-               p->se.statistics.sleep_start    = 0;
-               p->se.statistics.block_start    = 0;
-#endif
-
-               if (!rt_task(p)) {
-                       /*
-                        * Renice negative nice level userspace
-                        * tasks back to 0:
-                        */
-                       if (TASK_NICE(p) < 0 && p->mm)
-                               set_user_nice(p, 0);
-                       continue;
-               }
-
-               raw_spin_lock(&p->pi_lock);
-               rq = __task_rq_lock(p);
-
-               normalize_task(rq, p);
-
-               __task_rq_unlock(rq);
-               raw_spin_unlock(&p->pi_lock);
-       } while_each_thread(g, p);
-
-       read_unlock_irqrestore(&tasklist_lock, flags);
-}
-
-#endif /* CONFIG_MAGIC_SYSRQ */
-
-#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
-/*
- * These functions are only useful for the IA64 MCA handling, or kdb.
- *
- * They can only be called when the whole system has been
- * stopped - every CPU needs to be quiescent, and no scheduling
- * activity can take place. Using them for anything else would
- * be a serious bug, and as a result, they aren't even visible
- * under any other configuration.
- */
-
-/**
- * curr_task - return the current task for a given cpu.
- * @cpu: the processor in question.
- *
- * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
- */
-struct task_struct *curr_task(int cpu)
-{
-       return cpu_curr(cpu);
-}
-
-#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
-
-#ifdef CONFIG_IA64
-/**
- * set_curr_task - set the current task for a given cpu.
- * @cpu: the processor in question.
- * @p: the task pointer to set.
- *
- * Description: This function must only be used when non-maskable interrupts
- * are serviced on a separate stack. It allows the architecture to switch the
- * notion of the current task on a cpu in a non-blocking manner. This function
- * must be called with all CPU's synchronized, and interrupts disabled, the
- * and caller must save the original value of the current task (see
- * curr_task() above) and restore that value before reenabling interrupts and
- * re-starting the system.
- *
- * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
- */
-void set_curr_task(int cpu, struct task_struct *p)
-{
-       cpu_curr(cpu) = p;
-}
-
-#endif
-
-#ifdef CONFIG_CGROUP_SCHED
-/* task_group_lock serializes the addition/removal of task groups */
-static DEFINE_SPINLOCK(task_group_lock);
-
-static void free_sched_group(struct task_group *tg)
-{
-       free_fair_sched_group(tg);
-       free_rt_sched_group(tg);
-       autogroup_free(tg);
-       kfree(tg);
-}
-
-/* allocate runqueue etc for a new task group */
-struct task_group *sched_create_group(struct task_group *parent)
-{
-       struct task_group *tg;
-
-       tg = kzalloc(sizeof(*tg), GFP_KERNEL);
-       if (!tg)
-               return ERR_PTR(-ENOMEM);
-
-       if (!alloc_fair_sched_group(tg, parent))
-               goto err;
-
-       if (!alloc_rt_sched_group(tg, parent))
-               goto err;
-
-       return tg;
-
-err:
-       free_sched_group(tg);
-       return ERR_PTR(-ENOMEM);
-}
-
-void sched_online_group(struct task_group *tg, struct task_group *parent)
-{
-       unsigned long flags;
-
-       spin_lock_irqsave(&task_group_lock, flags);
-       list_add_rcu(&tg->list, &task_groups);
-
-       WARN_ON(!parent); /* root should already exist */
-
-       tg->parent = parent;
-       INIT_LIST_HEAD(&tg->children);
-       list_add_rcu(&tg->siblings, &parent->children);
-       spin_unlock_irqrestore(&task_group_lock, flags);
-}
-
-/* rcu callback to free various structures associated with a task group */
-static void free_sched_group_rcu(struct rcu_head *rhp)
-{
-       /* now it should be safe to free those cfs_rqs */
-       free_sched_group(container_of(rhp, struct task_group, rcu));
-}
-
-/* Destroy runqueue etc associated with a task group */
-void sched_destroy_group(struct task_group *tg)
-{
-       /* wait for possible concurrent references to cfs_rqs complete */
-       call_rcu(&tg->rcu, free_sched_group_rcu);
-}
-
-void sched_offline_group(struct task_group *tg)
-{
-       unsigned long flags;
-       int i;
-
-       /* end participation in shares distribution */
-       for_each_possible_cpu(i)
-               unregister_fair_sched_group(tg, i);
-
-       spin_lock_irqsave(&task_group_lock, flags);
-       list_del_rcu(&tg->list);
-       list_del_rcu(&tg->siblings);
-       spin_unlock_irqrestore(&task_group_lock, flags);
-}
-
-/* change task's runqueue when it moves between groups.
- *     The caller of this function should have put the task in its new group
- *     by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
- *     reflect its new group.
- */
-void sched_move_task(struct task_struct *tsk)
-{
-       struct task_group *tg;
-       int on_rq, running;
-       unsigned long flags;
-       struct rq *rq;
-
-       rq = task_rq_lock(tsk, &flags);
-
-       running = task_current(rq, tsk);
-       on_rq = tsk->on_rq;
-
-       if (on_rq)
-               dequeue_task(rq, tsk, 0);
-       if (unlikely(running))
-               tsk->sched_class->put_prev_task(rq, tsk);
-
-       tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
-                               lockdep_is_held(&tsk->sighand->siglock)),
-                         struct task_group, css);
-       tg = autogroup_task_group(tsk, tg);
-       tsk->sched_task_group = tg;
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-       if (tsk->sched_class->task_move_group)
-               tsk->sched_class->task_move_group(tsk, on_rq);
-       else
-#endif
-               set_task_rq(tsk, task_cpu(tsk));
-
-       if (unlikely(running))
-               tsk->sched_class->set_curr_task(rq);
-       if (on_rq)
-               enqueue_task(rq, tsk, 0);
-
-       task_rq_unlock(rq, tsk, &flags);
-}
-#endif /* CONFIG_CGROUP_SCHED */
-
-#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
-static unsigned long to_ratio(u64 period, u64 runtime)
-{
-       if (runtime == RUNTIME_INF)
-               return 1ULL << 20;
-
-       return div64_u64(runtime << 20, period);
-}
-#endif
-
-#ifdef CONFIG_RT_GROUP_SCHED
-/*
- * Ensure that the real time constraints are schedulable.
- */
-static DEFINE_MUTEX(rt_constraints_mutex);
-
-/* Must be called with tasklist_lock held */
-static inline int tg_has_rt_tasks(struct task_group *tg)
-{
-       struct task_struct *g, *p;
-
-       do_each_thread(g, p) {
-               if (rt_task(p) && task_rq(p)->rt.tg == tg)
-                       return 1;
-       } while_each_thread(g, p);
-
-       return 0;
-}
-
-struct rt_schedulable_data {
-       struct task_group *tg;
-       u64 rt_period;
-       u64 rt_runtime;
-};
-
-static int tg_rt_schedulable(struct task_group *tg, void *data)
-{
-       struct rt_schedulable_data *d = data;
-       struct task_group *child;
-       unsigned long total, sum = 0;
-       u64 period, runtime;
-
-       period = ktime_to_ns(tg->rt_bandwidth.rt_period);
-       runtime = tg->rt_bandwidth.rt_runtime;
-
-       if (tg == d->tg) {
-               period = d->rt_period;
-               runtime = d->rt_runtime;
-       }
-
-       /*
-        * Cannot have more runtime than the period.
-        */
-       if (runtime > period && runtime != RUNTIME_INF)
-               return -EINVAL;
-
-       /*
-        * Ensure we don't starve existing RT tasks.
-        */
-       if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
-               return -EBUSY;
-
-       total = to_ratio(period, runtime);
-
-       /*
-        * Nobody can have more than the global setting allows.
-        */
-       if (total > to_ratio(global_rt_period(), global_rt_runtime()))
-               return -EINVAL;
-
-       /*
-        * The sum of our children's runtime should not exceed our own.
-        */
-       list_for_each_entry_rcu(child, &tg->children, siblings) {
-               period = ktime_to_ns(child->rt_bandwidth.rt_period);
-               runtime = child->rt_bandwidth.rt_runtime;
-
-               if (child == d->tg) {
-                       period = d->rt_period;
-                       runtime = d->rt_runtime;
-               }
-
-               sum += to_ratio(period, runtime);
-       }
-
-       if (sum > total)
-               return -EINVAL;
-
-       return 0;
-}
-
-static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
-{
-       int ret;
-
-       struct rt_schedulable_data data = {
-               .tg = tg,
-               .rt_period = period,
-               .rt_runtime = runtime,
-       };
-
-       rcu_read_lock();
-       ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
-       rcu_read_unlock();
-
-       return ret;
-}
-
-static int tg_set_rt_bandwidth(struct task_group *tg,
-               u64 rt_period, u64 rt_runtime)
-{
-       int i, err = 0;
-
-       mutex_lock(&rt_constraints_mutex);
-       read_lock(&tasklist_lock);
-       err = __rt_schedulable(tg, rt_period, rt_runtime);
-       if (err)
-               goto unlock;
-
-       raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
-       tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
-       tg->rt_bandwidth.rt_runtime = rt_runtime;
-
-       for_each_possible_cpu(i) {
-               struct rt_rq *rt_rq = tg->rt_rq[i];
-
-               raw_spin_lock(&rt_rq->rt_runtime_lock);
-               rt_rq->rt_runtime = rt_runtime;
-               raw_spin_unlock(&rt_rq->rt_runtime_lock);
-       }
-       raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
-unlock:
-       read_unlock(&tasklist_lock);
-       mutex_unlock(&rt_constraints_mutex);
-
-       return err;
-}
-
-int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
-{
-       u64 rt_runtime, rt_period;
-
-       rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
-       rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
-       if (rt_runtime_us < 0)
-               rt_runtime = RUNTIME_INF;
-
-       return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
-}
-
-long sched_group_rt_runtime(struct task_group *tg)
-{
-       u64 rt_runtime_us;
-
-       if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
-               return -1;
-
-       rt_runtime_us = tg->rt_bandwidth.rt_runtime;
-       do_div(rt_runtime_us, NSEC_PER_USEC);
-       return rt_runtime_us;
-}
-
-int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
-{
-       u64 rt_runtime, rt_period;
-
-       rt_period = (u64)rt_period_us * NSEC_PER_USEC;
-       rt_runtime = tg->rt_bandwidth.rt_runtime;
-
-       if (rt_period == 0)
-               return -EINVAL;
-
-       return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
-}
-
-long sched_group_rt_period(struct task_group *tg)
-{
-       u64 rt_period_us;
-
-       rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
-       do_div(rt_period_us, NSEC_PER_USEC);
-       return rt_period_us;
-}
-
-static int sched_rt_global_constraints(void)
-{
-       u64 runtime, period;
-       int ret = 0;
-
-       if (sysctl_sched_rt_period <= 0)
-               return -EINVAL;
-
-       runtime = global_rt_runtime();
-       period = global_rt_period();
-
-       /*
-        * Sanity check on the sysctl variables.
-        */
-       if (runtime > period && runtime != RUNTIME_INF)
-               return -EINVAL;
-
-       mutex_lock(&rt_constraints_mutex);
-       read_lock(&tasklist_lock);
-       ret = __rt_schedulable(NULL, 0, 0);
-       read_unlock(&tasklist_lock);
-       mutex_unlock(&rt_constraints_mutex);
-
-       return ret;
-}
-
-int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
-{
-       /* Don't accept realtime tasks when there is no way for them to run */
-       if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
-               return 0;
-
-       return 1;
-}
-
-#else /* !CONFIG_RT_GROUP_SCHED */
-static int sched_rt_global_constraints(void)
-{
-       unsigned long flags;
-       int i;
-
-       if (sysctl_sched_rt_period <= 0)
-               return -EINVAL;
-
-       /*
-        * There's always some RT tasks in the root group
-        * -- migration, kstopmachine etc..
-        */
-       if (sysctl_sched_rt_runtime == 0)
-               return -EBUSY;
-
-       raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
-       for_each_possible_cpu(i) {
-               struct rt_rq *rt_rq = &cpu_rq(i)->rt;
-
-               raw_spin_lock(&rt_rq->rt_runtime_lock);
-               rt_rq->rt_runtime = global_rt_runtime();
-               raw_spin_unlock(&rt_rq->rt_runtime_lock);
-       }
-       raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
-
-       return 0;
-}
-#endif /* CONFIG_RT_GROUP_SCHED */
-
-int sched_rr_handler(struct ctl_table *table, int write,
-               void __user *buffer, size_t *lenp,
-               loff_t *ppos)
-{
-       int ret;
-       static DEFINE_MUTEX(mutex);
-
-       mutex_lock(&mutex);
-       ret = proc_dointvec(table, write, buffer, lenp, ppos);
-       /* make sure that internally we keep jiffies */
-       /* also, writing zero resets timeslice to default */
-       if (!ret && write) {
-               sched_rr_timeslice = sched_rr_timeslice <= 0 ?
-                       RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
-       }
-       mutex_unlock(&mutex);
-       return ret;
-}
-
-int sched_rt_handler(struct ctl_table *table, int write,
-               void __user *buffer, size_t *lenp,
-               loff_t *ppos)
-{
-       int ret;
-       int old_period, old_runtime;
-       static DEFINE_MUTEX(mutex);
-
-       mutex_lock(&mutex);
-       old_period = sysctl_sched_rt_period;
-       old_runtime = sysctl_sched_rt_runtime;
-
-       ret = proc_dointvec(table, write, buffer, lenp, ppos);
-
-       if (!ret && write) {
-               ret = sched_rt_global_constraints();
-               if (ret) {
-                       sysctl_sched_rt_period = old_period;
-                       sysctl_sched_rt_runtime = old_runtime;
-               } else {
-                       def_rt_bandwidth.rt_runtime = global_rt_runtime();
-                       def_rt_bandwidth.rt_period =
-                               ns_to_ktime(global_rt_period());
-               }
-       }
-       mutex_unlock(&mutex);
-
-       return ret;
-}
-
-#ifdef CONFIG_CGROUP_SCHED
-
-/* return corresponding task_group object of a cgroup */
-static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
-{
-       return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
-                           struct task_group, css);
-}
-
-static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
-{
-       struct task_group *tg, *parent;
-
-       if (!cgrp->parent) {
-               /* This is early initialization for the top cgroup */
-               return &root_task_group.css;
-       }
-
-       parent = cgroup_tg(cgrp->parent);
-       tg = sched_create_group(parent);
-       if (IS_ERR(tg))
-               return ERR_PTR(-ENOMEM);
-
-       return &tg->css;
-}
-
-static int cpu_cgroup_css_online(struct cgroup *cgrp)
-{
-       struct task_group *tg = cgroup_tg(cgrp);
-       struct task_group *parent;
-
-       if (!cgrp->parent)
-               return 0;
-
-       parent = cgroup_tg(cgrp->parent);
-       sched_online_group(tg, parent);
-       return 0;
-}
-
-static void cpu_cgroup_css_free(struct cgroup *cgrp)
-{
-       struct task_group *tg = cgroup_tg(cgrp);
-
-       sched_destroy_group(tg);
-}
-
-static void cpu_cgroup_css_offline(struct cgroup *cgrp)
-{
-       struct task_group *tg = cgroup_tg(cgrp);
-
-       sched_offline_group(tg);
-}
-
-static int cpu_cgroup_can_attach(struct cgroup *cgrp,
-                                struct cgroup_taskset *tset)
-{
-       struct task_struct *task;
-
-       cgroup_taskset_for_each(task, cgrp, tset) {
-#ifdef CONFIG_RT_GROUP_SCHED
-               if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
-                       return -EINVAL;
-#else
-               /* We don't support RT-tasks being in separate groups */
-               if (task->sched_class != &fair_sched_class)
-                       return -EINVAL;
-#endif
-       }
-       return 0;
-}
-
-static void cpu_cgroup_attach(struct cgroup *cgrp,
-                             struct cgroup_taskset *tset)
-{
-       struct task_struct *task;
-
-       cgroup_taskset_for_each(task, cgrp, tset)
-               sched_move_task(task);
-}
-
-static void
-cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
-               struct task_struct *task)
-{
-       /*
-        * cgroup_exit() is called in the copy_process() failure path.
-        * Ignore this case since the task hasn't ran yet, this avoids
-        * trying to poke a half freed task state from generic code.
-        */
-       if (!(task->flags & PF_EXITING))
-               return;
-
-       sched_move_task(task);
-}
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
-                               u64 shareval)
-{
-       return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
-}
-
-static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
-{
-       struct task_group *tg = cgroup_tg(cgrp);
-
-       return (u64) scale_load_down(tg->shares);
-}
-
-#ifdef CONFIG_CFS_BANDWIDTH
-static DEFINE_MUTEX(cfs_constraints_mutex);
-
-const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
-const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
-
-static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
-
-static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
-{
-       int i, ret = 0, runtime_enabled, runtime_was_enabled;
-       struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
-
-       if (tg == &root_task_group)
-               return -EINVAL;
-
-       /*
-        * Ensure we have at some amount of bandwidth every period.  This is
-        * to prevent reaching a state of large arrears when throttled via
-        * entity_tick() resulting in prolonged exit starvation.
-        */
-       if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
-               return -EINVAL;
-
-       /*
-        * Likewise, bound things on the otherside by preventing insane quota
-        * periods.  This also allows us to normalize in computing quota
-        * feasibility.
-        */
-       if (period > max_cfs_quota_period)
-               return -EINVAL;
-
-       mutex_lock(&cfs_constraints_mutex);
-       ret = __cfs_schedulable(tg, period, quota);
-       if (ret)
-               goto out_unlock;
-
-       runtime_enabled = quota != RUNTIME_INF;
-       runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
-       account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
-       raw_spin_lock_irq(&cfs_b->lock);
-       cfs_b->period = ns_to_ktime(period);
-       cfs_b->quota = quota;
-
-       __refill_cfs_bandwidth_runtime(cfs_b);
-       /* restart the period timer (if active) to handle new period expiry */
-       if (runtime_enabled && cfs_b->timer_active) {
-               /* force a reprogram */
-               cfs_b->timer_active = 0;
-               __start_cfs_bandwidth(cfs_b);
-       }
-       raw_spin_unlock_irq(&cfs_b->lock);
-
-       for_each_possible_cpu(i) {
-               struct cfs_rq *cfs_rq = tg->cfs_rq[i];
-               struct rq *rq = cfs_rq->rq;
-
-               raw_spin_lock_irq(&rq->lock);
-               cfs_rq->runtime_enabled = runtime_enabled;
-               cfs_rq->runtime_remaining = 0;
-
-               if (cfs_rq->throttled)
-                       unthrottle_cfs_rq(cfs_rq);
-               raw_spin_unlock_irq(&rq->lock);
-       }
-out_unlock:
-       mutex_unlock(&cfs_constraints_mutex);
-
-       return ret;
-}
-
-int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
-{
-       u64 quota, period;
-
-       period = ktime_to_ns(tg->cfs_bandwidth.period);
-       if (cfs_quota_us < 0)
-               quota = RUNTIME_INF;
-       else
-               quota = (u64)cfs_quota_us * NSEC_PER_USEC;
-
-       return tg_set_cfs_bandwidth(tg, period, quota);
-}
-
-long tg_get_cfs_quota(struct task_group *tg)
-{
-       u64 quota_us;
-
-       if (tg->cfs_bandwidth.quota == RUNTIME_INF)
-               return -1;
-
-       quota_us = tg->cfs_bandwidth.quota;
-       do_div(quota_us, NSEC_PER_USEC);
-
-       return quota_us;
-}
-
-int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
-{
-       u64 quota, period;
-
-       period = (u64)cfs_period_us * NSEC_PER_USEC;
-       quota = tg->cfs_bandwidth.quota;
-
-       return tg_set_cfs_bandwidth(tg, period, quota);
-}
-
-long tg_get_cfs_period(struct task_group *tg)
-{
-       u64 cfs_period_us;
-
-       cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
-       do_div(cfs_period_us, NSEC_PER_USEC);
-
-       return cfs_period_us;
-}
-
-static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
-{
-       return tg_get_cfs_quota(cgroup_tg(cgrp));
-}
-
-static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
-                               s64 cfs_quota_us)
-{
-       return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
-}
-
-static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
-{
-       return tg_get_cfs_period(cgroup_tg(cgrp));
-}
-
-static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
-                               u64 cfs_period_us)
-{
-       return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
-}
-
-struct cfs_schedulable_data {
-       struct task_group *tg;
-       u64 period, quota;
-};
-
-/*
- * normalize group quota/period to be quota/max_period
- * note: units are usecs
- */
-static u64 normalize_cfs_quota(struct task_group *tg,
-                              struct cfs_schedulable_data *d)
-{
-       u64 quota, period;
-
-       if (tg == d->tg) {
-               period = d->period;
-               quota = d->quota;
-       } else {
-               period = tg_get_cfs_period(tg);
-               quota = tg_get_cfs_quota(tg);
-       }
-
-       /* note: these should typically be equivalent */
-       if (quota == RUNTIME_INF || quota == -1)
-               return RUNTIME_INF;
-
-       return to_ratio(period, quota);
-}
-
-static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
-{
-       struct cfs_schedulable_data *d = data;
-       struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
-       s64 quota = 0, parent_quota = -1;
-
-       if (!tg->parent) {
-               quota = RUNTIME_INF;
-       } else {
-               struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
-
-               quota = normalize_cfs_quota(tg, d);
-               parent_quota = parent_b->hierarchal_quota;
-
-               /*
-                * ensure max(child_quota) <= parent_quota, inherit when no
-                * limit is set
-                */
-               if (quota == RUNTIME_INF)
-                       quota = parent_quota;
-               else if (parent_quota != RUNTIME_INF && quota > parent_quota)
-                       return -EINVAL;
-       }
-       cfs_b->hierarchal_quota = quota;
-
-       return 0;
-}
-
-static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
-{
-       int ret;
-       struct cfs_schedulable_data data = {
-               .tg = tg,
-               .period = period,
-               .quota = quota,
-       };
-
-       if (quota != RUNTIME_INF) {
-               do_div(data.period, NSEC_PER_USEC);
-               do_div(data.quota, NSEC_PER_USEC);
-       }
-
-       rcu_read_lock();
-       ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
-       rcu_read_unlock();
-
-       return ret;
-}
-
-static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
-               struct cgroup_map_cb *cb)
-{
-       struct task_group *tg = cgroup_tg(cgrp);
-       struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
-
-       cb->fill(cb, "nr_periods", cfs_b->nr_periods);
-       cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
-       cb->fill(cb, "throttled_time", cfs_b->throttled_time);
-
-       return 0;
-}
-#endif /* CONFIG_CFS_BANDWIDTH */
-#endif /* CONFIG_FAIR_GROUP_SCHED */
-
-#ifdef CONFIG_RT_GROUP_SCHED
-static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
-                               s64 val)
-{
-       return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
-}
-
-static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
-{
-       return sched_group_rt_runtime(cgroup_tg(cgrp));
-}
-
-static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
-               u64 rt_period_us)
-{
-       return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
-}
-
-static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
-{
-       return sched_group_rt_period(cgroup_tg(cgrp));
-}
-#endif /* CONFIG_RT_GROUP_SCHED */
-
-static struct cftype cpu_files[] = {
-#ifdef CONFIG_FAIR_GROUP_SCHED
-       {
-               .name = "shares",
-               .read_u64 = cpu_shares_read_u64,
-               .write_u64 = cpu_shares_write_u64,
-       },
-#endif
-#ifdef CONFIG_CFS_BANDWIDTH
-       {
-               .name = "cfs_quota_us",
-               .read_s64 = cpu_cfs_quota_read_s64,
-               .write_s64 = cpu_cfs_quota_write_s64,
-       },
-       {
-               .name = "cfs_period_us",
-               .read_u64 = cpu_cfs_period_read_u64,
-               .write_u64 = cpu_cfs_period_write_u64,
-       },
-       {
-               .name = "stat",
-               .read_map = cpu_stats_show,
-       },
-#endif
-#ifdef CONFIG_RT_GROUP_SCHED
-       {
-               .name = "rt_runtime_us",
-               .read_s64 = cpu_rt_runtime_read,
-               .write_s64 = cpu_rt_runtime_write,
-       },
-       {
-               .name = "rt_period_us",
-               .read_u64 = cpu_rt_period_read_uint,
-               .write_u64 = cpu_rt_period_write_uint,
-       },
-#endif
-       { }     /* terminate */
-};
-
-struct cgroup_subsys cpu_cgroup_subsys = {
-       .name           = "cpu",
-       .css_alloc      = cpu_cgroup_css_alloc,
-       .css_free       = cpu_cgroup_css_free,
-       .css_online     = cpu_cgroup_css_online,
-       .css_offline    = cpu_cgroup_css_offline,
-       .can_attach     = cpu_cgroup_can_attach,
-       .attach         = cpu_cgroup_attach,
-       .exit           = cpu_cgroup_exit,
-       .subsys_id      = cpu_cgroup_subsys_id,
-       .base_cftypes   = cpu_files,
-       .early_init     = 1,
-};
-
-#endif /* CONFIG_CGROUP_SCHED */
-
-#ifdef CONFIG_CGROUP_CPUACCT
-
-/*
- * CPU accounting code for task groups.
- *
- * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
- * (balbir@in.ibm.com).
- */
-
-struct cpuacct root_cpuacct;
-
-/* create a new cpu accounting group */
-static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
-{
-       struct cpuacct *ca;
-
-       if (!cgrp->parent)
-               return &root_cpuacct.css;
-
-       ca = kzalloc(sizeof(*ca), GFP_KERNEL);
-       if (!ca)
-               goto out;
-
-       ca->cpuusage = alloc_percpu(u64);
-       if (!ca->cpuusage)
-               goto out_free_ca;
-
-       ca->cpustat = alloc_percpu(struct kernel_cpustat);
-       if (!ca->cpustat)
-               goto out_free_cpuusage;
-
-       return &ca->css;
-
-out_free_cpuusage:
-       free_percpu(ca->cpuusage);
-out_free_ca:
-       kfree(ca);
-out:
-       return ERR_PTR(-ENOMEM);
-}
-
-/* destroy an existing cpu accounting group */
-static void cpuacct_css_free(struct cgroup *cgrp)
-{
-       struct cpuacct *ca = cgroup_ca(cgrp);
-
-       free_percpu(ca->cpustat);
-       free_percpu(ca->cpuusage);
-       kfree(ca);
-}
-
-static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
-{
-       u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
-       u64 data;
-
-#ifndef CONFIG_64BIT
-       /*
-        * Take rq->lock to make 64-bit read safe on 32-bit platforms.
-        */
-       raw_spin_lock_irq(&cpu_rq(cpu)->lock);
-       data = *cpuusage;
-       raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
-#else
-       data = *cpuusage;
-#endif
-
-       return data;
-}
-
-static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
-{
-       u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
-
-#ifndef CONFIG_64BIT
-       /*
-        * Take rq->lock to make 64-bit write safe on 32-bit platforms.
-        */
-       raw_spin_lock_irq(&cpu_rq(cpu)->lock);
-       *cpuusage = val;
-       raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
-#else
-       *cpuusage = val;
-#endif
-}
-
-/* return total cpu usage (in nanoseconds) of a group */
-static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
-{
-       struct cpuacct *ca = cgroup_ca(cgrp);
-       u64 totalcpuusage = 0;
-       int i;
-
-       for_each_present_cpu(i)
-               totalcpuusage += cpuacct_cpuusage_read(ca, i);
-
-       return totalcpuusage;
-}
-
-static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
-                                                               u64 reset)
-{
-       struct cpuacct *ca = cgroup_ca(cgrp);
-       int err = 0;
-       int i;
-
-       if (reset) {
-               err = -EINVAL;
-               goto out;
-       }
-
-       for_each_present_cpu(i)
-               cpuacct_cpuusage_write(ca, i, 0);
-
-out:
-       return err;
-}
-
-static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
-                                  struct seq_file *m)
-{
-       struct cpuacct *ca = cgroup_ca(cgroup);
-       u64 percpu;
-       int i;
-
-       for_each_present_cpu(i) {
-               percpu = cpuacct_cpuusage_read(ca, i);
-               seq_printf(m, "%llu ", (unsigned long long) percpu);
-       }
-       seq_printf(m, "\n");
-       return 0;
-}
-
-static const char *cpuacct_stat_desc[] = {
-       [CPUACCT_STAT_USER] = "user",
-       [CPUACCT_STAT_SYSTEM] = "system",
-};
-
-static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
-                             struct cgroup_map_cb *cb)
-{
-       struct cpuacct *ca = cgroup_ca(cgrp);
-       int cpu;
-       s64 val = 0;
-
-       for_each_online_cpu(cpu) {
-               struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
-               val += kcpustat->cpustat[CPUTIME_USER];
-               val += kcpustat->cpustat[CPUTIME_NICE];
-       }
-       val = cputime64_to_clock_t(val);
-       cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
-
-       val = 0;
-       for_each_online_cpu(cpu) {
-               struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
-               val += kcpustat->cpustat[CPUTIME_SYSTEM];
-               val += kcpustat->cpustat[CPUTIME_IRQ];
-               val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
-       }
-
-       val = cputime64_to_clock_t(val);
-       cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
-
-       return 0;
-}
-
-static struct cftype files[] = {
-       {
-               .name = "usage",
-               .read_u64 = cpuusage_read,
-               .write_u64 = cpuusage_write,
-       },
-       {
-               .name = "usage_percpu",
-               .read_seq_string = cpuacct_percpu_seq_read,
-       },
-       {
-               .name = "stat",
-               .read_map = cpuacct_stats_show,
-       },
-       { }     /* terminate */
-};
-
-/*
- * charge this task's execution time to its accounting group.
- *
- * called with rq->lock held.
- */
-void cpuacct_charge(struct task_struct *tsk, u64 cputime)
-{
-       struct cpuacct *ca;
-       int cpu;
-
-       if (unlikely(!cpuacct_subsys.active))
-               return;
-
-       cpu = task_cpu(tsk);
-
-       rcu_read_lock();
-
-       ca = task_ca(tsk);
-
-       for (; ca; ca = parent_ca(ca)) {
-               u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
-               *cpuusage += cputime;
-       }
-
-       rcu_read_unlock();
-}
-
-struct cgroup_subsys cpuacct_subsys = {
-       .name = "cpuacct",
-       .css_alloc = cpuacct_css_alloc,
-       .css_free = cpuacct_css_free,
-       .subsys_id = cpuacct_subsys_id,
-       .base_cftypes = files,
-};
-#endif /* CONFIG_CGROUP_CPUACCT */
-
-void dump_cpu_task(int cpu)
-{
-       pr_info("Task dump for CPU %d:\n", cpu);
-       sched_show_task(cpu_curr(cpu));
-}
diff --git a/kernel/sched.old/cpupri.c b/kernel/sched.old/cpupri.c
deleted file mode 100644 (file)
index 1095e87..0000000
+++ /dev/null
@@ -1,242 +0,0 @@
-/*
- *  kernel/sched/cpupri.c
- *
- *  CPU priority management
- *
- *  Copyright (C) 2007-2008 Novell
- *
- *  Author: Gregory Haskins <ghaskins@novell.com>
- *
- *  This code tracks the priority of each CPU so that global migration
- *  decisions are easy to calculate.  Each CPU can be in a state as follows:
- *
- *                 (INVALID), IDLE, NORMAL, RT1, ... RT99
- *
- *  going from the lowest priority to the highest.  CPUs in the INVALID state
- *  are not eligible for routing.  The system maintains this state with
- *  a 2 dimensional bitmap (the first for priority class, the second for cpus
- *  in that class).  Therefore a typical application without affinity
- *  restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
- *  searches).  For tasks with affinity restrictions, the algorithm has a
- *  worst case complexity of O(min(102, nr_domcpus)), though the scenario that
- *  yields the worst case search is fairly contrived.
- *
- *  This program is free software; you can redistribute it and/or
- *  modify it under the terms of the GNU General Public License
- *  as published by the Free Software Foundation; version 2
- *  of the License.
- */
-
-#include <linux/gfp.h>
-#include <linux/sched.h>
-#include <linux/sched/rt.h>
-#include "cpupri.h"
-
-/* Convert between a 140 based task->prio, and our 102 based cpupri */
-static int convert_prio(int prio)
-{
-       int cpupri;
-
-       if (prio == CPUPRI_INVALID)
-               cpupri = CPUPRI_INVALID;
-       else if (prio == MAX_PRIO)
-               cpupri = CPUPRI_IDLE;
-       else if (prio >= MAX_RT_PRIO)
-               cpupri = CPUPRI_NORMAL;
-       else
-               cpupri = MAX_RT_PRIO - prio + 1;
-
-       return cpupri;
-}
-
-/**
- * cpupri_find - find the best (lowest-pri) CPU in the system
- * @cp: The cpupri context
- * @p: The task
- * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
- *
- * Note: This function returns the recommended CPUs as calculated during the
- * current invocation.  By the time the call returns, the CPUs may have in
- * fact changed priorities any number of times.  While not ideal, it is not
- * an issue of correctness since the normal rebalancer logic will correct
- * any discrepancies created by racing against the uncertainty of the current
- * priority configuration.
- *
- * Returns: (int)bool - CPUs were found
- */
-int cpupri_find(struct cpupri *cp, struct task_struct *p,
-               struct cpumask *lowest_mask)
-{
-       int idx = 0;
-       int task_pri = convert_prio(p->prio);
-
-       if (task_pri >= MAX_RT_PRIO)
-               return 0;
-
-       for (idx = 0; idx < task_pri; idx++) {
-               struct cpupri_vec *vec  = &cp->pri_to_cpu[idx];
-               int skip = 0;
-
-               if (!atomic_read(&(vec)->count))
-                       skip = 1;
-               /*
-                * When looking at the vector, we need to read the counter,
-                * do a memory barrier, then read the mask.
-                *
-                * Note: This is still all racey, but we can deal with it.
-                *  Ideally, we only want to look at masks that are set.
-                *
-                *  If a mask is not set, then the only thing wrong is that we
-                *  did a little more work than necessary.
-                *
-                *  If we read a zero count but the mask is set, because of the
-                *  memory barriers, that can only happen when the highest prio
-                *  task for a run queue has left the run queue, in which case,
-                *  it will be followed by a pull. If the task we are processing
-                *  fails to find a proper place to go, that pull request will
-                *  pull this task if the run queue is running at a lower
-                *  priority.
-                */
-               smp_rmb();
-
-               /* Need to do the rmb for every iteration */
-               if (skip)
-                       continue;
-
-               if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids)
-                       continue;
-
-               if (lowest_mask) {
-                       cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask);
-
-                       /*
-                        * We have to ensure that we have at least one bit
-                        * still set in the array, since the map could have
-                        * been concurrently emptied between the first and
-                        * second reads of vec->mask.  If we hit this
-                        * condition, simply act as though we never hit this
-                        * priority level and continue on.
-                        */
-                       if (cpumask_any(lowest_mask) >= nr_cpu_ids)
-                               continue;
-               }
-
-               return 1;
-       }
-
-       return 0;
-}
-
-/**
- * cpupri_set - update the cpu priority setting
- * @cp: The cpupri context
- * @cpu: The target cpu
- * @newpri: The priority (INVALID-RT99) to assign to this CPU
- *
- * Note: Assumes cpu_rq(cpu)->lock is locked
- *
- * Returns: (void)
- */
-void cpupri_set(struct cpupri *cp, int cpu, int newpri)
-{
-       int *currpri = &cp->cpu_to_pri[cpu];
-       int oldpri = *currpri;
-       int do_mb = 0;
-
-       newpri = convert_prio(newpri);
-
-       BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
-
-       if (newpri == oldpri)
-               return;
-
-       /*
-        * If the cpu was currently mapped to a different value, we
-        * need to map it to the new value then remove the old value.
-        * Note, we must add the new value first, otherwise we risk the
-        * cpu being missed by the priority loop in cpupri_find.
-        */
-       if (likely(newpri != CPUPRI_INVALID)) {
-               struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
-
-               cpumask_set_cpu(cpu, vec->mask);
-               /*
-                * When adding a new vector, we update the mask first,
-                * do a write memory barrier, and then update the count, to
-                * make sure the vector is visible when count is set.
-                */
-               smp_mb__before_atomic_inc();
-               atomic_inc(&(vec)->count);
-               do_mb = 1;
-       }
-       if (likely(oldpri != CPUPRI_INVALID)) {
-               struct cpupri_vec *vec  = &cp->pri_to_cpu[oldpri];
-
-               /*
-                * Because the order of modification of the vec->count
-                * is important, we must make sure that the update
-                * of the new prio is seen before we decrement the
-                * old prio. This makes sure that the loop sees
-                * one or the other when we raise the priority of
-                * the run queue. We don't care about when we lower the
-                * priority, as that will trigger an rt pull anyway.
-                *
-                * We only need to do a memory barrier if we updated
-                * the new priority vec.
-                */
-               if (do_mb)
-                       smp_mb__after_atomic_inc();
-
-               /*
-                * When removing from the vector, we decrement the counter first
-                * do a memory barrier and then clear the mask.
-                */
-               atomic_dec(&(vec)->count);
-               smp_mb__after_atomic_inc();
-               cpumask_clear_cpu(cpu, vec->mask);
-       }
-
-       *currpri = newpri;
-}
-
-/**
- * cpupri_init - initialize the cpupri structure
- * @cp: The cpupri context
- *
- * Returns: -ENOMEM if memory fails.
- */
-int cpupri_init(struct cpupri *cp)
-{
-       int i;
-
-       memset(cp, 0, sizeof(*cp));
-
-       for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
-               struct cpupri_vec *vec = &cp->pri_to_cpu[i];
-
-               atomic_set(&vec->count, 0);
-               if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
-                       goto cleanup;
-       }
-
-       for_each_possible_cpu(i)
-               cp->cpu_to_pri[i] = CPUPRI_INVALID;
-       return 0;
-
-cleanup:
-       for (i--; i >= 0; i--)
-               free_cpumask_var(cp->pri_to_cpu[i].mask);
-       return -ENOMEM;
-}
-
-/**
- * cpupri_cleanup - clean up the cpupri structure
- * @cp: The cpupri context
- */
-void cpupri_cleanup(struct cpupri *cp)
-{
-       int i;
-
-       for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
-               free_cpumask_var(cp->pri_to_cpu[i].mask);
-}
diff --git a/kernel/sched.old/cpupri.h b/kernel/sched.old/cpupri.h
deleted file mode 100644 (file)
index f6d7561..0000000
+++ /dev/null
@@ -1,34 +0,0 @@
-#ifndef _LINUX_CPUPRI_H
-#define _LINUX_CPUPRI_H
-
-#include <linux/sched.h>
-
-#define CPUPRI_NR_PRIORITIES   (MAX_RT_PRIO + 2)
-
-#define CPUPRI_INVALID -1
-#define CPUPRI_IDLE     0
-#define CPUPRI_NORMAL   1
-/* values 2-101 are RT priorities 0-99 */
-
-struct cpupri_vec {
-       atomic_t        count;
-       cpumask_var_t   mask;
-};
-
-struct cpupri {
-       struct cpupri_vec pri_to_cpu[CPUPRI_NR_PRIORITIES];
-       int               cpu_to_pri[NR_CPUS];
-};
-
-#ifdef CONFIG_SMP
-int  cpupri_find(struct cpupri *cp,
-                struct task_struct *p, struct cpumask *lowest_mask);
-void cpupri_set(struct cpupri *cp, int cpu, int pri);
-int cpupri_init(struct cpupri *cp);
-void cpupri_cleanup(struct cpupri *cp);
-#else
-#define cpupri_set(cp, cpu, pri) do { } while (0)
-#define cpupri_init() do { } while (0)
-#endif
-
-#endif /* _LINUX_CPUPRI_H */
diff --git a/kernel/sched.old/cputime.c b/kernel/sched.old/cputime.c
deleted file mode 100644 (file)
index e93cca9..0000000
+++ /dev/null
@@ -1,817 +0,0 @@
-#include <linux/export.h>
-#include <linux/sched.h>
-#include <linux/tsacct_kern.h>
-#include <linux/kernel_stat.h>
-#include <linux/static_key.h>
-#include <linux/context_tracking.h>
-#include "sched.h"
-
-
-#ifdef CONFIG_IRQ_TIME_ACCOUNTING
-
-/*
- * There are no locks covering percpu hardirq/softirq time.
- * They are only modified in vtime_account, on corresponding CPU
- * with interrupts disabled. So, writes are safe.
- * They are read and saved off onto struct rq in update_rq_clock().
- * This may result in other CPU reading this CPU's irq time and can
- * race with irq/vtime_account on this CPU. We would either get old
- * or new value with a side effect of accounting a slice of irq time to wrong
- * task when irq is in progress while we read rq->clock. That is a worthy
- * compromise in place of having locks on each irq in account_system_time.
- */
-DEFINE_PER_CPU(u64, cpu_hardirq_time);
-DEFINE_PER_CPU(u64, cpu_softirq_time);
-
-static DEFINE_PER_CPU(u64, irq_start_time);
-static int sched_clock_irqtime;
-
-void enable_sched_clock_irqtime(void)
-{
-       sched_clock_irqtime = 1;
-}
-
-void disable_sched_clock_irqtime(void)
-{
-       sched_clock_irqtime = 0;
-}
-
-#ifndef CONFIG_64BIT
-DEFINE_PER_CPU(seqcount_t, irq_time_seq);
-#endif /* CONFIG_64BIT */
-
-/*
- * Called before incrementing preempt_count on {soft,}irq_enter
- * and before decrementing preempt_count on {soft,}irq_exit.
- */
-void irqtime_account_irq(struct task_struct *curr)
-{
-       unsigned long flags;
-       s64 delta;
-       int cpu;
-
-       if (!sched_clock_irqtime)
-               return;
-
-       local_irq_save(flags);
-
-       cpu = smp_processor_id();
-       delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
-       __this_cpu_add(irq_start_time, delta);
-
-       irq_time_write_begin();
-       /*
-        * We do not account for softirq time from ksoftirqd here.
-        * We want to continue accounting softirq time to ksoftirqd thread
-        * in that case, so as not to confuse scheduler with a special task
-        * that do not consume any time, but still wants to run.
-        */
-       if (hardirq_count())
-               __this_cpu_add(cpu_hardirq_time, delta);
-       else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
-               __this_cpu_add(cpu_softirq_time, delta);
-
-       irq_time_write_end();
-       local_irq_restore(flags);
-}
-EXPORT_SYMBOL_GPL(irqtime_account_irq);
-
-static int irqtime_account_hi_update(void)
-{
-       u64 *cpustat = kcpustat_this_cpu->cpustat;
-       unsigned long flags;
-       u64 latest_ns;
-       int ret = 0;
-
-       local_irq_save(flags);
-       latest_ns = this_cpu_read(cpu_hardirq_time);
-       if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
-               ret = 1;
-       local_irq_restore(flags);
-       return ret;
-}
-
-static int irqtime_account_si_update(void)
-{
-       u64 *cpustat = kcpustat_this_cpu->cpustat;
-       unsigned long flags;
-       u64 latest_ns;
-       int ret = 0;
-
-       local_irq_save(flags);
-       latest_ns = this_cpu_read(cpu_softirq_time);
-       if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
-               ret = 1;
-       local_irq_restore(flags);
-       return ret;
-}
-
-#else /* CONFIG_IRQ_TIME_ACCOUNTING */
-
-#define sched_clock_irqtime    (0)
-
-#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
-
-static inline void task_group_account_field(struct task_struct *p, int index,
-                                           u64 tmp)
-{
-#ifdef CONFIG_CGROUP_CPUACCT
-       struct kernel_cpustat *kcpustat;
-       struct cpuacct *ca;
-#endif
-       /*
-        * Since all updates are sure to touch the root cgroup, we
-        * get ourselves ahead and touch it first. If the root cgroup
-        * is the only cgroup, then nothing else should be necessary.
-        *
-        */
-       __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
-
-#ifdef CONFIG_CGROUP_CPUACCT
-       if (unlikely(!cpuacct_subsys.active))
-               return;
-
-       rcu_read_lock();
-       ca = task_ca(p);
-       while (ca && (ca != &root_cpuacct)) {
-               kcpustat = this_cpu_ptr(ca->cpustat);
-               kcpustat->cpustat[index] += tmp;
-               ca = parent_ca(ca);
-       }
-       rcu_read_unlock();
-#endif
-}
-
-/*
- * Account user cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @cputime: the cpu time spent in user space since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
- */
-void account_user_time(struct task_struct *p, cputime_t cputime,
-                      cputime_t cputime_scaled)
-{
-       int index;
-
-       /* Add user time to process. */
-       p->utime += cputime;
-       p->utimescaled += cputime_scaled;
-       account_group_user_time(p, cputime);
-
-       index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
-
-       /* Add user time to cpustat. */
-       task_group_account_field(p, index, (__force u64) cputime);
-
-       /* Account for user time used */
-       acct_account_cputime(p);
-}
-
-/*
- * Account guest cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @cputime: the cpu time spent in virtual machine since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
- */
-static void account_guest_time(struct task_struct *p, cputime_t cputime,
-                              cputime_t cputime_scaled)
-{
-       u64 *cpustat = kcpustat_this_cpu->cpustat;
-
-       /* Add guest time to process. */
-       p->utime += cputime;
-       p->utimescaled += cputime_scaled;
-       account_group_user_time(p, cputime);
-       p->gtime += cputime;
-
-       /* Add guest time to cpustat. */
-       if (TASK_NICE(p) > 0) {
-               cpustat[CPUTIME_NICE] += (__force u64) cputime;
-               cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
-       } else {
-               cpustat[CPUTIME_USER] += (__force u64) cputime;
-               cpustat[CPUTIME_GUEST] += (__force u64) cputime;
-       }
-}
-
-/*
- * Account system cpu time to a process and desired cpustat field
- * @p: the process that the cpu time gets accounted to
- * @cputime: the cpu time spent in kernel space since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
- * @target_cputime64: pointer to cpustat field that has to be updated
- */
-static inline
-void __account_system_time(struct task_struct *p, cputime_t cputime,
-                       cputime_t cputime_scaled, int index)
-{
-       /* Add system time to process. */
-       p->stime += cputime;
-       p->stimescaled += cputime_scaled;
-       account_group_system_time(p, cputime);
-
-       /* Add system time to cpustat. */
-       task_group_account_field(p, index, (__force u64) cputime);
-
-       /* Account for system time used */
-       acct_account_cputime(p);
-}
-
-/*
- * Account system cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @hardirq_offset: the offset to subtract from hardirq_count()
- * @cputime: the cpu time spent in kernel space since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
- */
-void account_system_time(struct task_struct *p, int hardirq_offset,
-                        cputime_t cputime, cputime_t cputime_scaled)
-{
-       int index;
-
-       if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
-               account_guest_time(p, cputime, cputime_scaled);
-               return;
-       }
-
-       if (hardirq_count() - hardirq_offset)
-               index = CPUTIME_IRQ;
-       else if (in_serving_softirq())
-               index = CPUTIME_SOFTIRQ;
-       else
-               index = CPUTIME_SYSTEM;
-
-       __account_system_time(p, cputime, cputime_scaled, index);
-}
-
-/*
- * Account for involuntary wait time.
- * @cputime: the cpu time spent in involuntary wait
- */
-void account_steal_time(cputime_t cputime)
-{
-       u64 *cpustat = kcpustat_this_cpu->cpustat;
-
-       cpustat[CPUTIME_STEAL] += (__force u64) cputime;
-}
-
-/*
- * Account for idle time.
- * @cputime: the cpu time spent in idle wait
- */
-void account_idle_time(cputime_t cputime)
-{
-       u64 *cpustat = kcpustat_this_cpu->cpustat;
-       struct rq *rq = this_rq();
-
-       if (atomic_read(&rq->nr_iowait) > 0)
-               cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
-       else
-               cpustat[CPUTIME_IDLE] += (__force u64) cputime;
-}
-
-static __always_inline bool steal_account_process_tick(void)
-{
-#ifdef CONFIG_PARAVIRT
-       if (static_key_false(&paravirt_steal_enabled)) {
-               u64 steal, st = 0;
-
-               steal = paravirt_steal_clock(smp_processor_id());
-               steal -= this_rq()->prev_steal_time;
-
-               st = steal_ticks(steal);
-               this_rq()->prev_steal_time += st * TICK_NSEC;
-
-               account_steal_time(st);
-               return st;
-       }
-#endif
-       return false;
-}
-
-/*
- * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
- * tasks (sum on group iteration) belonging to @tsk's group.
- */
-void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
-{
-       struct signal_struct *sig = tsk->signal;
-       cputime_t utime, stime;
-       struct task_struct *t;
-
-       times->utime = sig->utime;
-       times->stime = sig->stime;
-       times->sum_exec_runtime = sig->sum_sched_runtime;
-
-       rcu_read_lock();
-       /* make sure we can trust tsk->thread_group list */
-       if (!likely(pid_alive(tsk)))
-               goto out;
-
-       t = tsk;
-       do {
-               task_cputime(t, &utime, &stime);
-               times->utime += utime;
-               times->stime += stime;
-               times->sum_exec_runtime += task_sched_runtime(t);
-       } while_each_thread(tsk, t);
-out:
-       rcu_read_unlock();
-}
-
-#ifdef CONFIG_IRQ_TIME_ACCOUNTING
-/*
- * Account a tick to a process and cpustat
- * @p: the process that the cpu time gets accounted to
- * @user_tick: is the tick from userspace
- * @rq: the pointer to rq
- *
- * Tick demultiplexing follows the order
- * - pending hardirq update
- * - pending softirq update
- * - user_time
- * - idle_time
- * - system time
- *   - check for guest_time
- *   - else account as system_time
- *
- * Check for hardirq is done both for system and user time as there is
- * no timer going off while we are on hardirq and hence we may never get an
- * opportunity to update it solely in system time.
- * p->stime and friends are only updated on system time and not on irq
- * softirq as those do not count in task exec_runtime any more.
- */
-static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
-                                               struct rq *rq)
-{
-       cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
-       u64 *cpustat = kcpustat_this_cpu->cpustat;
-
-       if (steal_account_process_tick())
-               return;
-
-       if (irqtime_account_hi_update()) {
-               cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
-       } else if (irqtime_account_si_update()) {
-               cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
-       } else if (this_cpu_ksoftirqd() == p) {
-               /*
-                * ksoftirqd time do not get accounted in cpu_softirq_time.
-                * So, we have to handle it separately here.
-                * Also, p->stime needs to be updated for ksoftirqd.
-                */
-               __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
-                                       CPUTIME_SOFTIRQ);
-       } else if (user_tick) {
-               account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
-       } else if (p == rq->idle) {
-               account_idle_time(cputime_one_jiffy);
-       } else if (p->flags & PF_VCPU) { /* System time or guest time */
-               account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
-       } else {
-               __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
-                                       CPUTIME_SYSTEM);
-       }
-}
-
-static void irqtime_account_idle_ticks(int ticks)
-{
-       int i;
-       struct rq *rq = this_rq();
-
-       for (i = 0; i < ticks; i++)
-               irqtime_account_process_tick(current, 0, rq);
-}
-#else /* CONFIG_IRQ_TIME_ACCOUNTING */
-static inline void irqtime_account_idle_ticks(int ticks) {}
-static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
-                                               struct rq *rq) {}
-#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
-
-#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
-/*
- * Account a single tick of cpu time.
- * @p: the process that the cpu time gets accounted to
- * @user_tick: indicates if the tick is a user or a system tick
- */
-void account_process_tick(struct task_struct *p, int user_tick)
-{
-       cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
-       struct rq *rq = this_rq();
-
-       if (vtime_accounting_enabled())
-               return;
-
-       if (sched_clock_irqtime) {
-               irqtime_account_process_tick(p, user_tick, rq);
-               return;
-       }
-
-       if (steal_account_process_tick())
-               return;
-
-       if (user_tick)
-               account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
-       else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
-               account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
-                                   one_jiffy_scaled);
-       else
-               account_idle_time(cputime_one_jiffy);
-}
-
-/*
- * Account multiple ticks of steal time.
- * @p: the process from which the cpu time has been stolen
- * @ticks: number of stolen ticks
- */
-void account_steal_ticks(unsigned long ticks)
-{
-       account_steal_time(jiffies_to_cputime(ticks));
-}
-
-/*
- * Account multiple ticks of idle time.
- * @ticks: number of stolen ticks
- */
-void account_idle_ticks(unsigned long ticks)
-{
-
-       if (sched_clock_irqtime) {
-               irqtime_account_idle_ticks(ticks);
-               return;
-       }
-
-       account_idle_time(jiffies_to_cputime(ticks));
-}
-#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
-
-/*
- * Use precise platform statistics if available:
- */
-#ifdef CONFIG_VIRT_CPU_ACCOUNTING
-void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
-{
-       *ut = p->utime;
-       *st = p->stime;
-}
-
-void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
-{
-       struct task_cputime cputime;
-
-       thread_group_cputime(p, &cputime);
-
-       *ut = cputime.utime;
-       *st = cputime.stime;
-}
-
-#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
-void vtime_task_switch(struct task_struct *prev)
-{
-       if (!vtime_accounting_enabled())
-               return;
-
-       if (is_idle_task(prev))
-               vtime_account_idle(prev);
-       else
-               vtime_account_system(prev);
-
-#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
-       vtime_account_user(prev);
-#endif
-       arch_vtime_task_switch(prev);
-}
-#endif
-
-/*
- * Archs that account the whole time spent in the idle task
- * (outside irq) as idle time can rely on this and just implement
- * vtime_account_system() and vtime_account_idle(). Archs that
- * have other meaning of the idle time (s390 only includes the
- * time spent by the CPU when it's in low power mode) must override
- * vtime_account().
- */
-#ifndef __ARCH_HAS_VTIME_ACCOUNT
-void vtime_account_irq_enter(struct task_struct *tsk)
-{
-       if (!vtime_accounting_enabled())
-               return;
-
-       if (!in_interrupt()) {
-               /*
-                * If we interrupted user, context_tracking_in_user()
-                * is 1 because the context tracking don't hook
-                * on irq entry/exit. This way we know if
-                * we need to flush user time on kernel entry.
-                */
-               if (context_tracking_in_user()) {
-                       vtime_account_user(tsk);
-                       return;
-               }
-
-               if (is_idle_task(tsk)) {
-                       vtime_account_idle(tsk);
-                       return;
-               }
-       }
-       vtime_account_system(tsk);
-}
-EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
-#endif /* __ARCH_HAS_VTIME_ACCOUNT */
-
-#else /* !CONFIG_VIRT_CPU_ACCOUNTING */
-
-static cputime_t scale_stime(cputime_t stime, cputime_t rtime, cputime_t total)
-{
-       u64 temp = (__force u64) rtime;
-
-       temp *= (__force u64) stime;
-
-       if (sizeof(cputime_t) == 4)
-               temp = div_u64(temp, (__force u32) total);
-       else
-               temp = div64_u64(temp, (__force u64) total);
-
-       return (__force cputime_t) temp;
-}
-
-/*
- * Adjust tick based cputime random precision against scheduler
- * runtime accounting.
- */
-static void cputime_adjust(struct task_cputime *curr,
-                          struct cputime *prev,
-                          cputime_t *ut, cputime_t *st)
-{
-       cputime_t rtime, stime, total;
-
-       stime = curr->stime;
-       total = stime + curr->utime;
-
-       /*
-        * Tick based cputime accounting depend on random scheduling
-        * timeslices of a task to be interrupted or not by the timer.
-        * Depending on these circumstances, the number of these interrupts
-        * may be over or under-optimistic, matching the real user and system
-        * cputime with a variable precision.
-        *
-        * Fix this by scaling these tick based values against the total
-        * runtime accounted by the CFS scheduler.
-        */
-       rtime = nsecs_to_cputime(curr->sum_exec_runtime);
-
-       if (total)
-               stime = scale_stime(stime, rtime, total);
-       else
-               stime = rtime;
-
-       /*
-        * If the tick based count grows faster than the scheduler one,
-        * the result of the scaling may go backward.
-        * Let's enforce monotonicity.
-        */
-       prev->stime = max(prev->stime, stime);
-       prev->utime = max(prev->utime, rtime - prev->stime);
-
-       *ut = prev->utime;
-       *st = prev->stime;
-}
-
-void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
-{
-       struct task_cputime cputime = {
-               .sum_exec_runtime = p->se.sum_exec_runtime,
-       };
-
-       task_cputime(p, &cputime.utime, &cputime.stime);
-       cputime_adjust(&cputime, &p->prev_cputime, ut, st);
-}
-
-/*
- * Must be called with siglock held.
- */
-void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
-{
-       struct task_cputime cputime;
-
-       thread_group_cputime(p, &cputime);
-       cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
-}
-#endif /* !CONFIG_VIRT_CPU_ACCOUNTING */
-
-#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
-static unsigned long long vtime_delta(struct task_struct *tsk)
-{
-       unsigned long long clock;
-
-       clock = local_clock();
-       if (clock < tsk->vtime_snap)
-               return 0;
-
-       return clock - tsk->vtime_snap;
-}
-
-static cputime_t get_vtime_delta(struct task_struct *tsk)
-{
-       unsigned long long delta = vtime_delta(tsk);
-
-       WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
-       tsk->vtime_snap += delta;
-
-       /* CHECKME: always safe to convert nsecs to cputime? */
-       return nsecs_to_cputime(delta);
-}
-
-static void __vtime_account_system(struct task_struct *tsk)
-{
-       cputime_t delta_cpu = get_vtime_delta(tsk);
-
-       account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
-}
-
-void vtime_account_system(struct task_struct *tsk)
-{
-       if (!vtime_accounting_enabled())
-               return;
-
-       write_seqlock(&tsk->vtime_seqlock);
-       __vtime_account_system(tsk);
-       write_sequnlock(&tsk->vtime_seqlock);
-}
-
-void vtime_account_irq_exit(struct task_struct *tsk)
-{
-       if (!vtime_accounting_enabled())
-               return;
-
-       write_seqlock(&tsk->vtime_seqlock);
-       if (context_tracking_in_user())
-               tsk->vtime_snap_whence = VTIME_USER;
-       __vtime_account_system(tsk);
-       write_sequnlock(&tsk->vtime_seqlock);
-}
-
-void vtime_account_user(struct task_struct *tsk)
-{
-       cputime_t delta_cpu;
-
-       if (!vtime_accounting_enabled())
-               return;
-
-       delta_cpu = get_vtime_delta(tsk);
-
-       write_seqlock(&tsk->vtime_seqlock);
-       tsk->vtime_snap_whence = VTIME_SYS;
-       account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
-       write_sequnlock(&tsk->vtime_seqlock);
-}
-
-void vtime_user_enter(struct task_struct *tsk)
-{
-       if (!vtime_accounting_enabled())
-               return;
-
-       write_seqlock(&tsk->vtime_seqlock);
-       tsk->vtime_snap_whence = VTIME_USER;
-       __vtime_account_system(tsk);
-       write_sequnlock(&tsk->vtime_seqlock);
-}
-
-void vtime_guest_enter(struct task_struct *tsk)
-{
-       write_seqlock(&tsk->vtime_seqlock);
-       __vtime_account_system(tsk);
-       current->flags |= PF_VCPU;
-       write_sequnlock(&tsk->vtime_seqlock);
-}
-
-void vtime_guest_exit(struct task_struct *tsk)
-{
-       write_seqlock(&tsk->vtime_seqlock);
-       __vtime_account_system(tsk);
-       current->flags &= ~PF_VCPU;
-       write_sequnlock(&tsk->vtime_seqlock);
-}
-
-void vtime_account_idle(struct task_struct *tsk)
-{
-       cputime_t delta_cpu = get_vtime_delta(tsk);
-
-       account_idle_time(delta_cpu);
-}
-
-bool vtime_accounting_enabled(void)
-{
-       return context_tracking_active();
-}
-
-void arch_vtime_task_switch(struct task_struct *prev)
-{
-       write_seqlock(&prev->vtime_seqlock);
-       prev->vtime_snap_whence = VTIME_SLEEPING;
-       write_sequnlock(&prev->vtime_seqlock);
-
-       write_seqlock(&current->vtime_seqlock);
-       current->vtime_snap_whence = VTIME_SYS;
-       current->vtime_snap = sched_clock();
-       write_sequnlock(&current->vtime_seqlock);
-}
-
-void vtime_init_idle(struct task_struct *t)
-{
-       unsigned long flags;
-
-       write_seqlock_irqsave(&t->vtime_seqlock, flags);
-       t->vtime_snap_whence = VTIME_SYS;
-       t->vtime_snap = sched_clock();
-       write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
-}
-
-cputime_t task_gtime(struct task_struct *t)
-{
-       unsigned int seq;
-       cputime_t gtime;
-
-       do {
-               seq = read_seqbegin(&t->vtime_seqlock);
-
-               gtime = t->gtime;
-               if (t->flags & PF_VCPU)
-                       gtime += vtime_delta(t);
-
-       } while (read_seqretry(&t->vtime_seqlock, seq));
-
-       return gtime;
-}
-
-/*
- * Fetch cputime raw values from fields of task_struct and
- * add up the pending nohz execution time since the last
- * cputime snapshot.
- */
-static void
-fetch_task_cputime(struct task_struct *t,
-                  cputime_t *u_dst, cputime_t *s_dst,
-                  cputime_t *u_src, cputime_t *s_src,
-                  cputime_t *udelta, cputime_t *sdelta)
-{
-       unsigned int seq;
-       unsigned long long delta;
-
-       do {
-               *udelta = 0;
-               *sdelta = 0;
-
-               seq = read_seqbegin(&t->vtime_seqlock);
-
-               if (u_dst)
-                       *u_dst = *u_src;
-               if (s_dst)
-                       *s_dst = *s_src;
-
-               /* Task is sleeping, nothing to add */
-               if (t->vtime_snap_whence == VTIME_SLEEPING ||
-                   is_idle_task(t))
-    &nbs