Merge tag 'v3.18' into p/abusse/merge_upgrade
[projects/modsched/linux.git] / kernel / sched / cfs / sched.h
index 88c85b2..2df8ef0 100644 (file)
@@ -2,6 +2,7 @@
 #include <linux/sched.h>
 #include <linux/sched/sysctl.h>
 #include <linux/sched/rt.h>
+#include <linux/sched/deadline.h>
 #include <linux/mutex.h>
 #include <linux/spinlock.h>
 #include <linux/stop_machine.h>
@@ -9,9 +10,15 @@
 #include <linux/slab.h>
 
 #include "cpupri.h"
+#include "cpudeadline.h"
 #include "cpuacct.h"
 
 struct rq;
+struct cpuidle_state;
+
+/* task_struct::on_rq states: */
+#define TASK_ON_RQ_QUEUED      1
+#define TASK_ON_RQ_MIGRATING   2
 
 extern __read_mostly int scheduler_running;
 
@@ -21,24 +28,6 @@ extern atomic_long_t calc_load_tasks;
 extern long calc_load_fold_active(struct rq *this_rq);
 extern void update_cpu_load_active(struct rq *this_rq);
 
-/*
- * Convert user-nice values [ -20 ... 0 ... 19 ]
- * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
- * and back.
- */
-#define NICE_TO_PRIO(nice)     (MAX_RT_PRIO + (nice) + 20)
-#define PRIO_TO_NICE(prio)     ((prio) - MAX_RT_PRIO - 20)
-#define TASK_NICE(p)           PRIO_TO_NICE((p)->static_prio)
-
-/*
- * 'User priority' is the nice value converted to something we
- * can work with better when scaling various scheduler parameters,
- * it's a [ 0 ... 39 ] range.
- */
-#define USER_PRIO(p)           ((p)-MAX_RT_PRIO)
-#define TASK_USER_PRIO(p)      USER_PRIO((p)->static_prio)
-#define MAX_USER_PRIO          (USER_PRIO(MAX_PRIO))
-
 /*
  * Helpers for converting nanosecond timing to jiffy resolution
  */
@@ -72,6 +61,13 @@ extern void update_cpu_load_active(struct rq *this_rq);
 #define NICE_0_LOAD            SCHED_LOAD_SCALE
 #define NICE_0_SHIFT           SCHED_LOAD_SHIFT
 
+/*
+ * Single value that decides SCHED_DEADLINE internal math precision.
+ * 10 -> just above 1us
+ * 9  -> just above 0.5us
+ */
+#define DL_SCALE (10)
+
 /*
  * These are the 'tuning knobs' of the scheduler:
  */
@@ -81,11 +77,19 @@ extern void update_cpu_load_active(struct rq *this_rq);
  */
 #define RUNTIME_INF    ((u64)~0ULL)
 
+static inline int fair_policy(int policy)
+{
+       return policy == SCHED_NORMAL || policy == SCHED_BATCH;
+}
+
 static inline int rt_policy(int policy)
 {
-       if (policy == SCHED_FIFO || policy == SCHED_RR)
-               return 1;
-       return 0;
+       return policy == SCHED_FIFO || policy == SCHED_RR;
+}
+
+static inline int dl_policy(int policy)
+{
+       return policy == SCHED_DEADLINE;
 }
 
 static inline int task_has_rt_policy(struct task_struct *p)
@@ -93,6 +97,25 @@ static inline int task_has_rt_policy(struct task_struct *p)
        return rt_policy(p->policy);
 }
 
+static inline int task_has_dl_policy(struct task_struct *p)
+{
+       return dl_policy(p->policy);
+}
+
+static inline bool dl_time_before(u64 a, u64 b)
+{
+       return (s64)(a - b) < 0;
+}
+
+/*
+ * Tells if entity @a should preempt entity @b.
+ */
+static inline bool
+dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
+{
+       return dl_time_before(a->deadline, b->deadline);
+}
+
 /*
  * This is the priority-queue data structure of the RT scheduling class:
  */
@@ -109,6 +132,50 @@ struct rt_bandwidth {
        struct hrtimer          rt_period_timer;
 };
 
+void __dl_clear_params(struct task_struct *p);
+
+/*
+ * To keep the bandwidth of -deadline tasks and groups under control
+ * we need some place where:
+ *  - store the maximum -deadline bandwidth of the system (the group);
+ *  - cache the fraction of that bandwidth that is currently allocated.
+ *
+ * This is all done in the data structure below. It is similar to the
+ * one used for RT-throttling (rt_bandwidth), with the main difference
+ * that, since here we are only interested in admission control, we
+ * do not decrease any runtime while the group "executes", neither we
+ * need a timer to replenish it.
+ *
+ * With respect to SMP, the bandwidth is given on a per-CPU basis,
+ * meaning that:
+ *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
+ *  - dl_total_bw array contains, in the i-eth element, the currently
+ *    allocated bandwidth on the i-eth CPU.
+ * Moreover, groups consume bandwidth on each CPU, while tasks only
+ * consume bandwidth on the CPU they're running on.
+ * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
+ * that will be shown the next time the proc or cgroup controls will
+ * be red. It on its turn can be changed by writing on its own
+ * control.
+ */
+struct dl_bandwidth {
+       raw_spinlock_t dl_runtime_lock;
+       u64 dl_runtime;
+       u64 dl_period;
+};
+
+static inline int dl_bandwidth_enabled(void)
+{
+       return sysctl_sched_rt_runtime >= 0;
+}
+
+extern struct dl_bw *dl_bw_of(int i);
+
+struct dl_bw {
+       raw_spinlock_t lock;
+       u64 bw, total_bw;
+};
+
 extern struct mutex sched_domains_mutex;
 
 #ifdef CONFIG_CGROUP_SCHED
@@ -125,7 +192,7 @@ struct cfs_bandwidth {
        raw_spinlock_t lock;
        ktime_t period;
        u64 quota, runtime;
-       s64 hierarchal_quota;
+       s64 hierarchical_quota;
        u64 runtime_expires;
 
        int idle, timer_active;
@@ -219,7 +286,7 @@ extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 
 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
-extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
+extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 
 extern void free_rt_sched_group(struct task_group *tg);
@@ -350,6 +417,8 @@ struct rt_rq {
        int overloaded;
        struct plist_head pushable_tasks;
 #endif
+       int rt_queued;
+
        int rt_throttled;
        u64 rt_time;
        u64 rt_runtime;
@@ -364,6 +433,41 @@ struct rt_rq {
 #endif
 };
 
+/* Deadline class' related fields in a runqueue */
+struct dl_rq {
+       /* runqueue is an rbtree, ordered by deadline */
+       struct rb_root rb_root;
+       struct rb_node *rb_leftmost;
+
+       unsigned long dl_nr_running;
+
+#ifdef CONFIG_SMP
+       /*
+        * Deadline values of the currently executing and the
+        * earliest ready task on this rq. Caching these facilitates
+        * the decision wether or not a ready but not running task
+        * should migrate somewhere else.
+        */
+       struct {
+               u64 curr;
+               u64 next;
+       } earliest_dl;
+
+       unsigned long dl_nr_migratory;
+       int overloaded;
+
+       /*
+        * Tasks on this rq that can be pushed away. They are kept in
+        * an rb-tree, ordered by tasks' deadlines, with caching
+        * of the leftmost (earliest deadline) element.
+        */
+       struct rb_root pushable_dl_tasks_root;
+       struct rb_node *pushable_dl_tasks_leftmost;
+#else
+       struct dl_bw dl_bw;
+#endif
+};
+
 #ifdef CONFIG_SMP
 
 /*
@@ -381,6 +485,18 @@ struct root_domain {
        cpumask_var_t span;
        cpumask_var_t online;
 
+       /* Indicate more than one runnable task for any CPU */
+       bool overload;
+
+       /*
+        * The bit corresponding to a CPU gets set here if such CPU has more
+        * than one runnable -deadline task (as it is below for RT tasks).
+        */
+       cpumask_var_t dlo_mask;
+       atomic_t dlo_count;
+       struct dl_bw dl_bw;
+       struct cpudl cpudl;
+
        /*
         * The "RT overload" flag: it gets set if a CPU has more than
         * one runnable RT task.
@@ -432,15 +548,14 @@ struct rq {
 
        struct cfs_rq cfs;
        struct rt_rq rt;
+       struct dl_rq dl;
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
        /* list of leaf cfs_rq on this cpu: */
        struct list_head leaf_cfs_rq_list;
-#endif /* CONFIG_FAIR_GROUP_SCHED */
 
-#ifdef CONFIG_RT_GROUP_SCHED
-       struct list_head leaf_rt_rq_list;
-#endif
+       struct sched_avg avg;
+#endif /* CONFIG_FAIR_GROUP_SCHED */
 
        /*
         * This is part of a global counter where only the total sum
@@ -463,7 +578,7 @@ struct rq {
        struct root_domain *rd;
        struct sched_domain *sd;
 
-       unsigned long cpu_power;
+       unsigned long cpu_capacity;
 
        unsigned char idle_balance;
        /* For active balancing */
@@ -530,7 +645,10 @@ struct rq {
        struct llist_head wake_list;
 #endif
 
-       struct sched_avg avg;
+#ifdef CONFIG_CPU_IDLE
+       /* Must be inspected within a rcu lock section */
+       struct cpuidle_state *idle_state;
+#endif
 };
 
 static inline int cpu_of(struct rq *rq)
@@ -542,13 +660,13 @@ static inline int cpu_of(struct rq *rq)
 #endif
 }
 
-DECLARE_PER_CPU(struct rq, runqueues);
+DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 
 #define cpu_rq(cpu)            (&per_cpu(runqueues, (cpu)))
-#define this_rq()              (&__get_cpu_var(runqueues))
+#define this_rq()              this_cpu_ptr(&runqueues)
 #define task_rq(p)             cpu_rq(task_cpu(p))
 #define cpu_curr(cpu)          (cpu_rq(cpu)->curr)
-#define raw_rq()               (&__raw_get_cpu_var(runqueues))
+#define raw_rq()               raw_cpu_ptr(&runqueues)
 
 static inline u64 rq_clock(struct rq *rq)
 {
@@ -568,6 +686,8 @@ extern int migrate_swap(struct task_struct *, struct task_struct *);
 
 #ifdef CONFIG_SMP
 
+extern void sched_ttwu_pending(void);
+
 #define rcu_dereference_check_sched_domain(p) \
        rcu_dereference_check((p), \
                              lockdep_is_held(&sched_domains_mutex))
@@ -626,15 +746,15 @@ DECLARE_PER_CPU(struct sched_domain *, sd_numa);
 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
 
-struct sched_group_power {
+struct sched_group_capacity {
        atomic_t ref;
        /*
-        * CPU power of this group, SCHED_LOAD_SCALE being max power for a
-        * single CPU.
+        * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
+        * for a single CPU.
         */
-       unsigned int power, power_orig;
+       unsigned int capacity, capacity_orig;
        unsigned long next_update;
-       int imbalance; /* XXX unrelated to power but shared group state */
+       int imbalance; /* XXX unrelated to capacity but shared group state */
        /*
         * Number of busy cpus in this group.
         */
@@ -648,7 +768,7 @@ struct sched_group {
        atomic_t ref;
 
        unsigned int group_weight;
-       struct sched_group_power *sgp;
+       struct sched_group_capacity *sgc;
 
        /*
         * The CPUs this group covers.
@@ -671,7 +791,7 @@ static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
  */
 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
 {
-       return to_cpumask(sg->sgp->cpumask);
+       return to_cpumask(sg->sgc->cpumask);
 }
 
 /**
@@ -685,6 +805,10 @@ static inline unsigned int group_first_cpu(struct sched_group *group)
 
 extern int group_balance_cpu(struct sched_group *sg);
 
+#else
+
+static inline void sched_ttwu_pending(void) { }
+
 #endif /* CONFIG_SMP */
 
 #include "stats.h"
@@ -776,20 +900,10 @@ enum {
 #undef SCHED_FEAT
 
 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
-static __always_inline bool static_branch__true(struct static_key *key)
-{
-       return static_key_true(key); /* Not out of line branch. */
-}
-
-static __always_inline bool static_branch__false(struct static_key *key)
-{
-       return static_key_false(key); /* Out of line branch. */
-}
-
 #define SCHED_FEAT(name, enabled)                                      \
 static __always_inline bool static_branch_##name(struct static_key *key) \
 {                                                                      \
-       return static_branch__##enabled(key);                           \
+       return static_key_##enabled(key);                               \
 }
 
 #include "features.h"
@@ -827,8 +941,6 @@ static inline u64 global_rt_runtime(void)
        return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
 }
 
-
-
 static inline int task_current(struct rq *rq, struct task_struct *p)
 {
        return rq->curr == p;
@@ -843,6 +955,15 @@ static inline int task_running(struct rq *rq, struct task_struct *p)
 #endif
 }
 
+static inline int task_on_rq_queued(struct task_struct *p)
+{
+       return p->on_rq == TASK_ON_RQ_QUEUED;
+}
+
+static inline int task_on_rq_migrating(struct task_struct *p)
+{
+       return p->on_rq == TASK_ON_RQ_MIGRATING;
+}
 
 #ifndef prepare_arch_switch
 # define prepare_arch_switch(next)     do { } while (0)
@@ -854,7 +975,6 @@ static inline int task_running(struct rq *rq, struct task_struct *p)
 # define finish_arch_post_lock_switch()        do { } while (0)
 #endif
 
-#ifndef __ARCH_WANT_UNLOCKED_CTXSW
 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
 {
 #ifdef CONFIG_SMP
@@ -892,35 +1012,6 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
        raw_spin_unlock_irq(&rq->lock);
 }
 
-#else /* __ARCH_WANT_UNLOCKED_CTXSW */
-static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
-{
-#ifdef CONFIG_SMP
-       /*
-        * We can optimise this out completely for !SMP, because the
-        * SMP rebalancing from interrupt is the only thing that cares
-        * here.
-        */
-       next->on_cpu = 1;
-#endif
-       raw_spin_unlock(&rq->lock);
-}
-
-static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
-{
-#ifdef CONFIG_SMP
-       /*
-        * After ->on_cpu is cleared, the task can be moved to a different CPU.
-        * We must ensure this doesn't happen until the switch is completely
-        * finished.
-        */
-       smp_wmb();
-       prev->on_cpu = 0;
-#endif
-       local_irq_enable();
-}
-#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
-
 /*
  * wake flags
  */
@@ -988,9 +1079,12 @@ static const u32 prio_to_wmult[40] = {
 #else
 #define ENQUEUE_WAKING         0
 #endif
+#define ENQUEUE_REPLENISH      8
 
 #define DEQUEUE_SLEEP          1
 
+#define RETRY_TASK             ((void *)-1UL)
+
 struct sched_class {
        const struct sched_class *next;
 
@@ -1001,14 +1095,22 @@ struct sched_class {
 
        void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
 
-       struct task_struct * (*pick_next_task) (struct rq *rq);
+       /*
+        * It is the responsibility of the pick_next_task() method that will
+        * return the next task to call put_prev_task() on the @prev task or
+        * something equivalent.
+        *
+        * May return RETRY_TASK when it finds a higher prio class has runnable
+        * tasks.
+        */
+       struct task_struct * (*pick_next_task) (struct rq *rq,
+                                               struct task_struct *prev);
        void (*put_prev_task) (struct rq *rq, struct task_struct *p);
 
 #ifdef CONFIG_SMP
        int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
        void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
 
-       void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
        void (*post_schedule) (struct rq *this_rq);
        void (*task_waking) (struct task_struct *task);
        void (*task_woken) (struct rq *this_rq, struct task_struct *task);
@@ -1023,6 +1125,7 @@ struct sched_class {
        void (*set_curr_task) (struct rq *rq);
        void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
        void (*task_fork) (struct task_struct *p);
+       void (*task_dead) (struct task_struct *p);
 
        void (*switched_from) (struct rq *this_rq, struct task_struct *task);
        void (*switched_to) (struct rq *this_rq, struct task_struct *task);
@@ -1032,16 +1135,24 @@ struct sched_class {
        unsigned int (*get_rr_interval) (struct rq *rq,
                                         struct task_struct *task);
 
+       void (*update_curr) (struct rq *rq);
+
 #ifdef CONFIG_FAIR_GROUP_SCHED
        void (*task_move_group) (struct task_struct *p, int on_rq);
 #endif
 };
 
+static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
+{
+       prev->sched_class->put_prev_task(rq, prev);
+}
+
 #define sched_class_highest (&stop_sched_class)
 #define for_each_class(class) \
    for (class = sched_class_highest; class; class = class->next)
 
 extern const struct sched_class stop_sched_class;
+extern const struct sched_class dl_sched_class;
 extern const struct sched_class rt_sched_class;
 extern const struct sched_class fair_sched_class;
 extern const struct sched_class idle_sched_class;
@@ -1049,66 +1160,100 @@ extern const struct sched_class idle_sched_class;
 
 #ifdef CONFIG_SMP
 
-extern void update_group_power(struct sched_domain *sd, int cpu);
+extern void update_group_capacity(struct sched_domain *sd, int cpu);
 
-extern void trigger_load_balance(struct rq *rq, int cpu);
-extern void idle_balance(int this_cpu, struct rq *this_rq);
+extern void trigger_load_balance(struct rq *rq);
 
 extern void idle_enter_fair(struct rq *this_rq);
 extern void idle_exit_fair(struct rq *this_rq);
 
-#else  /* CONFIG_SMP */
+#else
 
-static inline void idle_balance(int cpu, struct rq *rq)
+static inline void idle_enter_fair(struct rq *rq) { }
+static inline void idle_exit_fair(struct rq *rq) { }
+
+#endif
+
+#ifdef CONFIG_CPU_IDLE
+static inline void idle_set_state(struct rq *rq,
+                                 struct cpuidle_state *idle_state)
 {
+       rq->idle_state = idle_state;
 }
 
+static inline struct cpuidle_state *idle_get_state(struct rq *rq)
+{
+       WARN_ON(!rcu_read_lock_held());
+       return rq->idle_state;
+}
+#else
+static inline void idle_set_state(struct rq *rq,
+                                 struct cpuidle_state *idle_state)
+{
+}
+
+static inline struct cpuidle_state *idle_get_state(struct rq *rq)
+{
+       return NULL;
+}
 #endif
 
 extern void sysrq_sched_debug_show(void);
 extern void sched_init_granularity(void);
 extern void update_max_interval(void);
+
+extern void init_sched_dl_class(void);
 extern void init_sched_rt_class(void);
 extern void init_sched_fair_class(void);
+extern void init_sched_dl_class(void);
 
-extern void resched_task(struct task_struct *p);
+extern void resched_curr(struct rq *rq);
 extern void resched_cpu(int cpu);
 
 extern struct rt_bandwidth def_rt_bandwidth;
 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
 
+extern struct dl_bandwidth def_dl_bandwidth;
+extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
+extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
+
+unsigned long to_ratio(u64 period, u64 runtime);
+
 extern void update_idle_cpu_load(struct rq *this_rq);
 
 extern void init_task_runnable_average(struct task_struct *p);
 
-#ifdef CONFIG_PARAVIRT
-static inline u64 steal_ticks(u64 steal)
+static inline void add_nr_running(struct rq *rq, unsigned count)
 {
-       if (unlikely(steal > NSEC_PER_SEC))
-               return div_u64(steal, TICK_NSEC);
+       unsigned prev_nr = rq->nr_running;
 
-       return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
-}
-#endif
+       rq->nr_running = prev_nr + count;
 
-static inline void inc_nr_running(struct rq *rq)
-{
-       rq->nr_running++;
+       if (prev_nr < 2 && rq->nr_running >= 2) {
+#ifdef CONFIG_SMP
+               if (!rq->rd->overload)
+                       rq->rd->overload = true;
+#endif
 
 #ifdef CONFIG_NO_HZ_FULL
-       if (rq->nr_running == 2) {
                if (tick_nohz_full_cpu(rq->cpu)) {
-                       /* Order rq->nr_running write against the IPI */
-                       smp_wmb();
-                       smp_send_reschedule(rq->cpu);
+                       /*
+                        * Tick is needed if more than one task runs on a CPU.
+                        * Send the target an IPI to kick it out of nohz mode.
+                        *
+                        * We assume that IPI implies full memory barrier and the
+                        * new value of rq->nr_running is visible on reception
+                        * from the target.
+                        */
+                       tick_nohz_full_kick_cpu(rq->cpu);
                }
-       }
 #endif
+       }
 }
 
-static inline void dec_nr_running(struct rq *rq)
+static inline void sub_nr_running(struct rq *rq, unsigned count)
 {
-       rq->nr_running--;
+       rq->nr_running -= count;
 }
 
 static inline void rq_last_tick_reset(struct rq *rq)
@@ -1260,6 +1405,15 @@ static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
        spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
 }
 
+static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
+{
+       if (l1 > l2)
+               swap(l1, l2);
+
+       spin_lock_irq(l1);
+       spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
+}
+
 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
 {
        if (l1 > l2)
@@ -1353,6 +1507,7 @@ extern void print_rt_stats(struct seq_file *m, int cpu);
 
 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
+extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
 
 extern void cfs_bandwidth_usage_inc(void);
 extern void cfs_bandwidth_usage_dec(void);