Merge tag 'v4.0' into p/abusse/merge_upgrade
[projects/modsched/linux.git] / kernel / sched / cfs / cputime.c
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8
9
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12 /*
13  * There are no locks covering percpu hardirq/softirq time.
14  * They are only modified in vtime_account, on corresponding CPU
15  * with interrupts disabled. So, writes are safe.
16  * They are read and saved off onto struct rq in update_rq_clock().
17  * This may result in other CPU reading this CPU's irq time and can
18  * race with irq/vtime_account on this CPU. We would either get old
19  * or new value with a side effect of accounting a slice of irq time to wrong
20  * task when irq is in progress while we read rq->clock. That is a worthy
21  * compromise in place of having locks on each irq in account_system_time.
22  */
23 DEFINE_PER_CPU(u64, cpu_hardirq_time);
24 DEFINE_PER_CPU(u64, cpu_softirq_time);
25
26 static DEFINE_PER_CPU(u64, irq_start_time);
27 static int sched_clock_irqtime;
28
29 void enable_sched_clock_irqtime(void)
30 {
31         sched_clock_irqtime = 1;
32 }
33
34 void disable_sched_clock_irqtime(void)
35 {
36         sched_clock_irqtime = 0;
37 }
38
39 #ifndef CONFIG_64BIT
40 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41 #endif /* CONFIG_64BIT */
42
43 /*
44  * Called before incrementing preempt_count on {soft,}irq_enter
45  * and before decrementing preempt_count on {soft,}irq_exit.
46  */
47 void irqtime_account_irq(struct task_struct *curr)
48 {
49         unsigned long flags;
50         s64 delta;
51         int cpu;
52
53         if (!sched_clock_irqtime)
54                 return;
55
56         local_irq_save(flags);
57
58         cpu = smp_processor_id();
59         delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60         __this_cpu_add(irq_start_time, delta);
61
62         irq_time_write_begin();
63         /*
64          * We do not account for softirq time from ksoftirqd here.
65          * We want to continue accounting softirq time to ksoftirqd thread
66          * in that case, so as not to confuse scheduler with a special task
67          * that do not consume any time, but still wants to run.
68          */
69         if (hardirq_count())
70                 __this_cpu_add(cpu_hardirq_time, delta);
71         else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72                 __this_cpu_add(cpu_softirq_time, delta);
73
74         irq_time_write_end();
75         local_irq_restore(flags);
76 }
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
78
79 static int irqtime_account_hi_update(void)
80 {
81         u64 *cpustat = kcpustat_this_cpu->cpustat;
82         unsigned long flags;
83         u64 latest_ns;
84         int ret = 0;
85
86         local_irq_save(flags);
87         latest_ns = this_cpu_read(cpu_hardirq_time);
88         if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89                 ret = 1;
90         local_irq_restore(flags);
91         return ret;
92 }
93
94 static int irqtime_account_si_update(void)
95 {
96         u64 *cpustat = kcpustat_this_cpu->cpustat;
97         unsigned long flags;
98         u64 latest_ns;
99         int ret = 0;
100
101         local_irq_save(flags);
102         latest_ns = this_cpu_read(cpu_softirq_time);
103         if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104                 ret = 1;
105         local_irq_restore(flags);
106         return ret;
107 }
108
109 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
110
111 #define sched_clock_irqtime     (0)
112
113 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114
115 static inline void task_group_account_field(struct task_struct *p, int index,
116                                             u64 tmp)
117 {
118         /*
119          * Since all updates are sure to touch the root cgroup, we
120          * get ourselves ahead and touch it first. If the root cgroup
121          * is the only cgroup, then nothing else should be necessary.
122          *
123          */
124         __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
125
126         cpuacct_account_field(p, index, tmp);
127 }
128
129 /*
130  * Account user cpu time to a process.
131  * @p: the process that the cpu time gets accounted to
132  * @cputime: the cpu time spent in user space since the last update
133  * @cputime_scaled: cputime scaled by cpu frequency
134  */
135 void account_user_time(struct task_struct *p, cputime_t cputime,
136                        cputime_t cputime_scaled)
137 {
138         int index;
139
140         /* Add user time to process. */
141         p->utime += cputime;
142         p->utimescaled += cputime_scaled;
143         account_group_user_time(p, cputime);
144
145         index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
146
147         /* Add user time to cpustat. */
148         task_group_account_field(p, index, (__force u64) cputime);
149
150         /* Account for user time used */
151         acct_account_cputime(p);
152 }
153
154 /*
155  * Account guest cpu time to a process.
156  * @p: the process that the cpu time gets accounted to
157  * @cputime: the cpu time spent in virtual machine since the last update
158  * @cputime_scaled: cputime scaled by cpu frequency
159  */
160 static void account_guest_time(struct task_struct *p, cputime_t cputime,
161                                cputime_t cputime_scaled)
162 {
163         u64 *cpustat = kcpustat_this_cpu->cpustat;
164
165         /* Add guest time to process. */
166         p->utime += cputime;
167         p->utimescaled += cputime_scaled;
168         account_group_user_time(p, cputime);
169         p->gtime += cputime;
170
171         /* Add guest time to cpustat. */
172         if (task_nice(p) > 0) {
173                 cpustat[CPUTIME_NICE] += (__force u64) cputime;
174                 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175         } else {
176                 cpustat[CPUTIME_USER] += (__force u64) cputime;
177                 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178         }
179 }
180
181 /*
182  * Account system cpu time to a process and desired cpustat field
183  * @p: the process that the cpu time gets accounted to
184  * @cputime: the cpu time spent in kernel space since the last update
185  * @cputime_scaled: cputime scaled by cpu frequency
186  * @target_cputime64: pointer to cpustat field that has to be updated
187  */
188 static inline
189 void __account_system_time(struct task_struct *p, cputime_t cputime,
190                         cputime_t cputime_scaled, int index)
191 {
192         /* Add system time to process. */
193         p->stime += cputime;
194         p->stimescaled += cputime_scaled;
195         account_group_system_time(p, cputime);
196
197         /* Add system time to cpustat. */
198         task_group_account_field(p, index, (__force u64) cputime);
199
200         /* Account for system time used */
201         acct_account_cputime(p);
202 }
203
204 /*
205  * Account system cpu time to a process.
206  * @p: the process that the cpu time gets accounted to
207  * @hardirq_offset: the offset to subtract from hardirq_count()
208  * @cputime: the cpu time spent in kernel space since the last update
209  * @cputime_scaled: cputime scaled by cpu frequency
210  */
211 void account_system_time(struct task_struct *p, int hardirq_offset,
212                          cputime_t cputime, cputime_t cputime_scaled)
213 {
214         int index;
215
216         if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217                 account_guest_time(p, cputime, cputime_scaled);
218                 return;
219         }
220
221         if (hardirq_count() - hardirq_offset)
222                 index = CPUTIME_IRQ;
223         else if (in_serving_softirq())
224                 index = CPUTIME_SOFTIRQ;
225         else
226                 index = CPUTIME_SYSTEM;
227
228         __account_system_time(p, cputime, cputime_scaled, index);
229 }
230
231 /*
232  * Account for involuntary wait time.
233  * @cputime: the cpu time spent in involuntary wait
234  */
235 void account_steal_time(cputime_t cputime)
236 {
237         u64 *cpustat = kcpustat_this_cpu->cpustat;
238
239         cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240 }
241
242 /*
243  * Account for idle time.
244  * @cputime: the cpu time spent in idle wait
245  */
246 void account_idle_time(cputime_t cputime)
247 {
248         u64 *cpustat = kcpustat_this_cpu->cpustat;
249         struct rq *rq = this_rq();
250
251         if (atomic_read(&rq->nr_iowait) > 0)
252                 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253         else
254                 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255 }
256
257 static __always_inline bool steal_account_process_tick(void)
258 {
259 #ifdef CONFIG_PARAVIRT
260         if (static_key_false(&paravirt_steal_enabled)) {
261                 u64 steal;
262                 cputime_t steal_ct;
263
264                 steal = paravirt_steal_clock(smp_processor_id());
265                 steal -= this_rq()->prev_steal_time;
266
267                 /*
268                  * cputime_t may be less precise than nsecs (eg: if it's
269                  * based on jiffies). Lets cast the result to cputime
270                  * granularity and account the rest on the next rounds.
271                  */
272                 steal_ct = nsecs_to_cputime(steal);
273                 this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
274
275                 account_steal_time(steal_ct);
276                 return steal_ct;
277         }
278 #endif
279         return false;
280 }
281
282 /*
283  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
284  * tasks (sum on group iteration) belonging to @tsk's group.
285  */
286 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
287 {
288         struct signal_struct *sig = tsk->signal;
289         cputime_t utime, stime;
290         struct task_struct *t;
291         unsigned int seq, nextseq;
292         unsigned long flags;
293
294         rcu_read_lock();
295         /* Attempt a lockless read on the first round. */
296         nextseq = 0;
297         do {
298                 seq = nextseq;
299                 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
300                 times->utime = sig->utime;
301                 times->stime = sig->stime;
302                 times->sum_exec_runtime = sig->sum_sched_runtime;
303
304                 for_each_thread(tsk, t) {
305                         task_cputime(t, &utime, &stime);
306                         times->utime += utime;
307                         times->stime += stime;
308                         times->sum_exec_runtime += task_sched_runtime(t);
309                 }
310                 /* If lockless access failed, take the lock. */
311                 nextseq = 1;
312         } while (need_seqretry(&sig->stats_lock, seq));
313         done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
314         rcu_read_unlock();
315 }
316
317 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
318 /*
319  * Account a tick to a process and cpustat
320  * @p: the process that the cpu time gets accounted to
321  * @user_tick: is the tick from userspace
322  * @rq: the pointer to rq
323  *
324  * Tick demultiplexing follows the order
325  * - pending hardirq update
326  * - pending softirq update
327  * - user_time
328  * - idle_time
329  * - system time
330  *   - check for guest_time
331  *   - else account as system_time
332  *
333  * Check for hardirq is done both for system and user time as there is
334  * no timer going off while we are on hardirq and hence we may never get an
335  * opportunity to update it solely in system time.
336  * p->stime and friends are only updated on system time and not on irq
337  * softirq as those do not count in task exec_runtime any more.
338  */
339 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
340                                          struct rq *rq, int ticks)
341 {
342         cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
343         u64 cputime = (__force u64) cputime_one_jiffy;
344         u64 *cpustat = kcpustat_this_cpu->cpustat;
345
346         if (steal_account_process_tick())
347                 return;
348
349         cputime *= ticks;
350         scaled *= ticks;
351
352         if (irqtime_account_hi_update()) {
353                 cpustat[CPUTIME_IRQ] += cputime;
354         } else if (irqtime_account_si_update()) {
355                 cpustat[CPUTIME_SOFTIRQ] += cputime;
356         } else if (this_cpu_ksoftirqd() == p) {
357                 /*
358                  * ksoftirqd time do not get accounted in cpu_softirq_time.
359                  * So, we have to handle it separately here.
360                  * Also, p->stime needs to be updated for ksoftirqd.
361                  */
362                 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
363         } else if (user_tick) {
364                 account_user_time(p, cputime, scaled);
365         } else if (p == rq->idle) {
366                 account_idle_time(cputime);
367         } else if (p->flags & PF_VCPU) { /* System time or guest time */
368                 account_guest_time(p, cputime, scaled);
369         } else {
370                 __account_system_time(p, cputime, scaled,       CPUTIME_SYSTEM);
371         }
372 }
373
374 static void irqtime_account_idle_ticks(int ticks)
375 {
376         struct rq *rq = this_rq();
377
378         irqtime_account_process_tick(current, 0, rq, ticks);
379 }
380 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
381 static inline void irqtime_account_idle_ticks(int ticks) {}
382 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
383                                                 struct rq *rq, int nr_ticks) {}
384 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
385
386 /*
387  * Use precise platform statistics if available:
388  */
389 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
390
391 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
392 void vtime_common_task_switch(struct task_struct *prev)
393 {
394         if (is_idle_task(prev))
395                 vtime_account_idle(prev);
396         else
397                 vtime_account_system(prev);
398
399 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
400         vtime_account_user(prev);
401 #endif
402         arch_vtime_task_switch(prev);
403 }
404 #endif
405
406 /*
407  * Archs that account the whole time spent in the idle task
408  * (outside irq) as idle time can rely on this and just implement
409  * vtime_account_system() and vtime_account_idle(). Archs that
410  * have other meaning of the idle time (s390 only includes the
411  * time spent by the CPU when it's in low power mode) must override
412  * vtime_account().
413  */
414 #ifndef __ARCH_HAS_VTIME_ACCOUNT
415 void vtime_common_account_irq_enter(struct task_struct *tsk)
416 {
417         if (!in_interrupt()) {
418                 /*
419                  * If we interrupted user, context_tracking_in_user()
420                  * is 1 because the context tracking don't hook
421                  * on irq entry/exit. This way we know if
422                  * we need to flush user time on kernel entry.
423                  */
424                 if (context_tracking_in_user()) {
425                         vtime_account_user(tsk);
426                         return;
427                 }
428
429                 if (is_idle_task(tsk)) {
430                         vtime_account_idle(tsk);
431                         return;
432                 }
433         }
434         vtime_account_system(tsk);
435 }
436 EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
437 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
438 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
439
440
441 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
442 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
443 {
444         *ut = p->utime;
445         *st = p->stime;
446 }
447
448 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
449 {
450         struct task_cputime cputime;
451
452         thread_group_cputime(p, &cputime);
453
454         *ut = cputime.utime;
455         *st = cputime.stime;
456 }
457 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
458 /*
459  * Account a single tick of cpu time.
460  * @p: the process that the cpu time gets accounted to
461  * @user_tick: indicates if the tick is a user or a system tick
462  */
463 void account_process_tick(struct task_struct *p, int user_tick)
464 {
465         cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
466         struct rq *rq = this_rq();
467
468         if (vtime_accounting_enabled())
469                 return;
470
471         if (sched_clock_irqtime) {
472                 irqtime_account_process_tick(p, user_tick, rq, 1);
473                 return;
474         }
475
476         if (steal_account_process_tick())
477                 return;
478
479         if (user_tick)
480                 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
481         else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
482                 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
483                                     one_jiffy_scaled);
484         else
485                 account_idle_time(cputime_one_jiffy);
486 }
487
488 /*
489  * Account multiple ticks of steal time.
490  * @p: the process from which the cpu time has been stolen
491  * @ticks: number of stolen ticks
492  */
493 void account_steal_ticks(unsigned long ticks)
494 {
495         account_steal_time(jiffies_to_cputime(ticks));
496 }
497
498 /*
499  * Account multiple ticks of idle time.
500  * @ticks: number of stolen ticks
501  */
502 void account_idle_ticks(unsigned long ticks)
503 {
504
505         if (sched_clock_irqtime) {
506                 irqtime_account_idle_ticks(ticks);
507                 return;
508         }
509
510         account_idle_time(jiffies_to_cputime(ticks));
511 }
512
513 /*
514  * Perform (stime * rtime) / total, but avoid multiplication overflow by
515  * loosing precision when the numbers are big.
516  */
517 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
518 {
519         u64 scaled;
520
521         for (;;) {
522                 /* Make sure "rtime" is the bigger of stime/rtime */
523                 if (stime > rtime)
524                         swap(rtime, stime);
525
526                 /* Make sure 'total' fits in 32 bits */
527                 if (total >> 32)
528                         goto drop_precision;
529
530                 /* Does rtime (and thus stime) fit in 32 bits? */
531                 if (!(rtime >> 32))
532                         break;
533
534                 /* Can we just balance rtime/stime rather than dropping bits? */
535                 if (stime >> 31)
536                         goto drop_precision;
537
538                 /* We can grow stime and shrink rtime and try to make them both fit */
539                 stime <<= 1;
540                 rtime >>= 1;
541                 continue;
542
543 drop_precision:
544                 /* We drop from rtime, it has more bits than stime */
545                 rtime >>= 1;
546                 total >>= 1;
547         }
548
549         /*
550          * Make sure gcc understands that this is a 32x32->64 multiply,
551          * followed by a 64/32->64 divide.
552          */
553         scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
554         return (__force cputime_t) scaled;
555 }
556
557 /*
558  * Atomically advance counter to the new value. Interrupts, vcpu
559  * scheduling, and scaling inaccuracies can cause cputime_advance
560  * to be occasionally called with a new value smaller than counter.
561  * Let's enforce atomicity.
562  *
563  * Normally a caller will only go through this loop once, or not
564  * at all in case a previous caller updated counter the same jiffy.
565  */
566 static void cputime_advance(cputime_t *counter, cputime_t new)
567 {
568         cputime_t old;
569
570         while (new > (old = ACCESS_ONCE(*counter)))
571                 cmpxchg_cputime(counter, old, new);
572 }
573
574 /*
575  * Adjust tick based cputime random precision against scheduler
576  * runtime accounting.
577  */
578 static void cputime_adjust(struct task_cputime *curr,
579                            struct cputime *prev,
580                            cputime_t *ut, cputime_t *st)
581 {
582         cputime_t rtime, stime, utime;
583
584         /*
585          * Tick based cputime accounting depend on random scheduling
586          * timeslices of a task to be interrupted or not by the timer.
587          * Depending on these circumstances, the number of these interrupts
588          * may be over or under-optimistic, matching the real user and system
589          * cputime with a variable precision.
590          *
591          * Fix this by scaling these tick based values against the total
592          * runtime accounted by the CFS scheduler.
593          */
594         rtime = nsecs_to_cputime(curr->sum_exec_runtime);
595
596         /*
597          * Update userspace visible utime/stime values only if actual execution
598          * time is bigger than already exported. Note that can happen, that we
599          * provided bigger values due to scaling inaccuracy on big numbers.
600          */
601         if (prev->stime + prev->utime >= rtime)
602                 goto out;
603
604         stime = curr->stime;
605         utime = curr->utime;
606
607         if (utime == 0) {
608                 stime = rtime;
609         } else if (stime == 0) {
610                 utime = rtime;
611         } else {
612                 cputime_t total = stime + utime;
613
614                 stime = scale_stime((__force u64)stime,
615                                     (__force u64)rtime, (__force u64)total);
616                 utime = rtime - stime;
617         }
618
619         cputime_advance(&prev->stime, stime);
620         cputime_advance(&prev->utime, utime);
621
622 out:
623         *ut = prev->utime;
624         *st = prev->stime;
625 }
626
627 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
628 {
629         struct task_cputime cputime = {
630                 .sum_exec_runtime = p->se.sum_exec_runtime,
631         };
632
633         task_cputime(p, &cputime.utime, &cputime.stime);
634         cputime_adjust(&cputime, &p->prev_cputime, ut, st);
635 }
636
637 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
638 {
639         struct task_cputime cputime;
640
641         thread_group_cputime(p, &cputime);
642         cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
643 }
644 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
645
646 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
647 static unsigned long long vtime_delta(struct task_struct *tsk)
648 {
649         unsigned long long clock;
650
651         clock = local_clock();
652         if (clock < tsk->vtime_snap)
653                 return 0;
654
655         return clock - tsk->vtime_snap;
656 }
657
658 static cputime_t get_vtime_delta(struct task_struct *tsk)
659 {
660         unsigned long long delta = vtime_delta(tsk);
661
662         WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
663         tsk->vtime_snap += delta;
664
665         /* CHECKME: always safe to convert nsecs to cputime? */
666         return nsecs_to_cputime(delta);
667 }
668
669 static void __vtime_account_system(struct task_struct *tsk)
670 {
671         cputime_t delta_cpu = get_vtime_delta(tsk);
672
673         account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
674 }
675
676 void vtime_account_system(struct task_struct *tsk)
677 {
678         write_seqlock(&tsk->vtime_seqlock);
679         __vtime_account_system(tsk);
680         write_sequnlock(&tsk->vtime_seqlock);
681 }
682
683 void vtime_gen_account_irq_exit(struct task_struct *tsk)
684 {
685         write_seqlock(&tsk->vtime_seqlock);
686         __vtime_account_system(tsk);
687         if (context_tracking_in_user())
688                 tsk->vtime_snap_whence = VTIME_USER;
689         write_sequnlock(&tsk->vtime_seqlock);
690 }
691
692 void vtime_account_user(struct task_struct *tsk)
693 {
694         cputime_t delta_cpu;
695
696         write_seqlock(&tsk->vtime_seqlock);
697         delta_cpu = get_vtime_delta(tsk);
698         tsk->vtime_snap_whence = VTIME_SYS;
699         account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
700         write_sequnlock(&tsk->vtime_seqlock);
701 }
702
703 void vtime_user_enter(struct task_struct *tsk)
704 {
705         write_seqlock(&tsk->vtime_seqlock);
706         __vtime_account_system(tsk);
707         tsk->vtime_snap_whence = VTIME_USER;
708         write_sequnlock(&tsk->vtime_seqlock);
709 }
710
711 void vtime_guest_enter(struct task_struct *tsk)
712 {
713         /*
714          * The flags must be updated under the lock with
715          * the vtime_snap flush and update.
716          * That enforces a right ordering and update sequence
717          * synchronization against the reader (task_gtime())
718          * that can thus safely catch up with a tickless delta.
719          */
720         write_seqlock(&tsk->vtime_seqlock);
721         __vtime_account_system(tsk);
722         current->flags |= PF_VCPU;
723         write_sequnlock(&tsk->vtime_seqlock);
724 }
725 EXPORT_SYMBOL_GPL(vtime_guest_enter);
726
727 void vtime_guest_exit(struct task_struct *tsk)
728 {
729         write_seqlock(&tsk->vtime_seqlock);
730         __vtime_account_system(tsk);
731         current->flags &= ~PF_VCPU;
732         write_sequnlock(&tsk->vtime_seqlock);
733 }
734 EXPORT_SYMBOL_GPL(vtime_guest_exit);
735
736 void vtime_account_idle(struct task_struct *tsk)
737 {
738         cputime_t delta_cpu = get_vtime_delta(tsk);
739
740         account_idle_time(delta_cpu);
741 }
742
743 void arch_vtime_task_switch(struct task_struct *prev)
744 {
745         write_seqlock(&prev->vtime_seqlock);
746         prev->vtime_snap_whence = VTIME_SLEEPING;
747         write_sequnlock(&prev->vtime_seqlock);
748
749         write_seqlock(&current->vtime_seqlock);
750         current->vtime_snap_whence = VTIME_SYS;
751         current->vtime_snap = sched_clock_cpu(smp_processor_id());
752         write_sequnlock(&current->vtime_seqlock);
753 }
754
755 void vtime_init_idle(struct task_struct *t, int cpu)
756 {
757         unsigned long flags;
758
759         write_seqlock_irqsave(&t->vtime_seqlock, flags);
760         t->vtime_snap_whence = VTIME_SYS;
761         t->vtime_snap = sched_clock_cpu(cpu);
762         write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
763 }
764
765 cputime_t task_gtime(struct task_struct *t)
766 {
767         unsigned int seq;
768         cputime_t gtime;
769
770         do {
771                 seq = read_seqbegin(&t->vtime_seqlock);
772
773                 gtime = t->gtime;
774                 if (t->flags & PF_VCPU)
775                         gtime += vtime_delta(t);
776
777         } while (read_seqretry(&t->vtime_seqlock, seq));
778
779         return gtime;
780 }
781
782 /*
783  * Fetch cputime raw values from fields of task_struct and
784  * add up the pending nohz execution time since the last
785  * cputime snapshot.
786  */
787 static void
788 fetch_task_cputime(struct task_struct *t,
789                    cputime_t *u_dst, cputime_t *s_dst,
790                    cputime_t *u_src, cputime_t *s_src,
791                    cputime_t *udelta, cputime_t *sdelta)
792 {
793         unsigned int seq;
794         unsigned long long delta;
795
796         do {
797                 *udelta = 0;
798                 *sdelta = 0;
799
800                 seq = read_seqbegin(&t->vtime_seqlock);
801
802                 if (u_dst)
803                         *u_dst = *u_src;
804                 if (s_dst)
805                         *s_dst = *s_src;
806
807                 /* Task is sleeping, nothing to add */
808                 if (t->vtime_snap_whence == VTIME_SLEEPING ||
809                     is_idle_task(t))
810                         continue;
811
812                 delta = vtime_delta(t);
813
814                 /*
815                  * Task runs either in user or kernel space, add pending nohz time to
816                  * the right place.
817                  */
818                 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
819                         *udelta = delta;
820                 } else {
821                         if (t->vtime_snap_whence == VTIME_SYS)
822                                 *sdelta = delta;
823                 }
824         } while (read_seqretry(&t->vtime_seqlock, seq));
825 }
826
827
828 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
829 {
830         cputime_t udelta, sdelta;
831
832         fetch_task_cputime(t, utime, stime, &t->utime,
833                            &t->stime, &udelta, &sdelta);
834         if (utime)
835                 *utime += udelta;
836         if (stime)
837                 *stime += sdelta;
838 }
839
840 void task_cputime_scaled(struct task_struct *t,
841                          cputime_t *utimescaled, cputime_t *stimescaled)
842 {
843         cputime_t udelta, sdelta;
844
845         fetch_task_cputime(t, utimescaled, stimescaled,
846                            &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
847         if (utimescaled)
848                 *utimescaled += cputime_to_scaled(udelta);
849         if (stimescaled)
850                 *stimescaled += cputime_to_scaled(sdelta);
851 }
852 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */