Merge tag 'v3.16' into p/abusse/merge_upgrade
[projects/modsched/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10         int sched_priority;
11 };
12
13 #include <asm/param.h>  /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt_mask.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/signal.h>
37 #include <linux/compiler.h>
38 #include <linux/completion.h>
39 #include <linux/pid.h>
40 #include <linux/percpu.h>
41 #include <linux/topology.h>
42 #include <linux/proportions.h>
43 #include <linux/seccomp.h>
44 #include <linux/rcupdate.h>
45 #include <linux/rculist.h>
46 #include <linux/rtmutex.h>
47
48 #include <linux/time.h>
49 #include <linux/param.h>
50 #include <linux/resource.h>
51 #include <linux/timer.h>
52 #include <linux/hrtimer.h>
53 #include <linux/task_io_accounting.h>
54 #include <linux/latencytop.h>
55 #include <linux/cred.h>
56 #include <linux/llist.h>
57 #include <linux/uidgid.h>
58 #include <linux/gfp.h>
59
60 #include <asm/processor.h>
61
62 #define SCHED_ATTR_SIZE_VER0    48      /* sizeof first published struct */
63
64 /*
65  * Extended scheduling parameters data structure.
66  *
67  * This is needed because the original struct sched_param can not be
68  * altered without introducing ABI issues with legacy applications
69  * (e.g., in sched_getparam()).
70  *
71  * However, the possibility of specifying more than just a priority for
72  * the tasks may be useful for a wide variety of application fields, e.g.,
73  * multimedia, streaming, automation and control, and many others.
74  *
75  * This variant (sched_attr) is meant at describing a so-called
76  * sporadic time-constrained task. In such model a task is specified by:
77  *  - the activation period or minimum instance inter-arrival time;
78  *  - the maximum (or average, depending on the actual scheduling
79  *    discipline) computation time of all instances, a.k.a. runtime;
80  *  - the deadline (relative to the actual activation time) of each
81  *    instance.
82  * Very briefly, a periodic (sporadic) task asks for the execution of
83  * some specific computation --which is typically called an instance--
84  * (at most) every period. Moreover, each instance typically lasts no more
85  * than the runtime and must be completed by time instant t equal to
86  * the instance activation time + the deadline.
87  *
88  * This is reflected by the actual fields of the sched_attr structure:
89  *
90  *  @size               size of the structure, for fwd/bwd compat.
91  *
92  *  @sched_policy       task's scheduling policy
93  *  @sched_flags        for customizing the scheduler behaviour
94  *  @sched_nice         task's nice value      (SCHED_NORMAL/BATCH)
95  *  @sched_priority     task's static priority (SCHED_FIFO/RR)
96  *  @sched_deadline     representative of the task's deadline
97  *  @sched_runtime      representative of the task's runtime
98  *  @sched_period       representative of the task's period
99  *
100  * Given this task model, there are a multiplicity of scheduling algorithms
101  * and policies, that can be used to ensure all the tasks will make their
102  * timing constraints.
103  *
104  * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
105  * only user of this new interface. More information about the algorithm
106  * available in the scheduling class file or in Documentation/.
107  */
108 struct sched_attr {
109         u32 size;
110
111         u32 sched_policy;
112         u64 sched_flags;
113
114         /* SCHED_NORMAL, SCHED_BATCH */
115         s32 sched_nice;
116
117         /* SCHED_FIFO, SCHED_RR */
118         u32 sched_priority;
119
120         /* SCHED_DEADLINE */
121         u64 sched_runtime;
122         u64 sched_deadline;
123         u64 sched_period;
124 };
125
126 #ifdef CONFIG_MOD_SCHED
127 #include <fw_task.h>
128 #endif
129
130 struct exec_domain;
131 struct futex_pi_state;
132 struct robust_list_head;
133 struct bio_list;
134 struct fs_struct;
135 struct perf_event_context;
136 struct blk_plug;
137 struct filename;
138
139 #define VMACACHE_BITS 2
140 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
141 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
142
143 /*
144  * These are the constant used to fake the fixed-point load-average
145  * counting. Some notes:
146  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
147  *    a load-average precision of 10 bits integer + 11 bits fractional
148  *  - if you want to count load-averages more often, you need more
149  *    precision, or rounding will get you. With 2-second counting freq,
150  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
151  *    11 bit fractions.
152  */
153 extern unsigned long avenrun[];         /* Load averages */
154 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
155
156 #define FSHIFT          11              /* nr of bits of precision */
157 #define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
158 #define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
159 #define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
160 #define EXP_5           2014            /* 1/exp(5sec/5min) */
161 #define EXP_15          2037            /* 1/exp(5sec/15min) */
162
163 #define CALC_LOAD(load,exp,n) \
164         load *= exp; \
165         load += n*(FIXED_1-exp); \
166         load >>= FSHIFT;
167
168 extern unsigned long total_forks;
169 extern int nr_threads;
170 DECLARE_PER_CPU(unsigned long, process_counts);
171 extern int nr_processes(void);
172 extern unsigned long nr_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern unsigned long this_cpu_load(void);
176
177
178 extern void calc_global_load(unsigned long ticks);
179 extern void update_cpu_load_nohz(void);
180
181 extern unsigned long get_parent_ip(unsigned long addr);
182
183 extern void dump_cpu_task(int cpu);
184
185 struct seq_file;
186 struct cfs_rq;
187 struct task_group;
188 #ifdef CONFIG_SCHED_DEBUG
189 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
190 extern void proc_sched_set_task(struct task_struct *p);
191 extern void
192 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
193 #endif
194
195 /*
196  * Task state bitmask. NOTE! These bits are also
197  * encoded in fs/proc/array.c: get_task_state().
198  *
199  * We have two separate sets of flags: task->state
200  * is about runnability, while task->exit_state are
201  * about the task exiting. Confusing, but this way
202  * modifying one set can't modify the other one by
203  * mistake.
204  */
205 #define TASK_RUNNING            0
206 #define TASK_INTERRUPTIBLE      1
207 #define TASK_UNINTERRUPTIBLE    2
208 #define __TASK_STOPPED          4
209 #define __TASK_TRACED           8
210 /* in tsk->exit_state */
211 #define EXIT_DEAD               16
212 #define EXIT_ZOMBIE             32
213 #define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
214 /* in tsk->state again */
215 #define TASK_DEAD               64
216 #define TASK_WAKEKILL           128
217 #define TASK_WAKING             256
218 #define TASK_PARKED             512
219 #define TASK_STATE_MAX          1024
220
221 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP"
222
223 extern char ___assert_task_state[1 - 2*!!(
224                 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
225
226 /* Convenience macros for the sake of set_task_state */
227 #define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
228 #define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
229 #define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
230
231 /* Convenience macros for the sake of wake_up */
232 #define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
233 #define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
234
235 /* get_task_state() */
236 #define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
237                                  TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
238                                  __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
239
240 #define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
241 #define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
242 #define task_is_stopped_or_traced(task) \
243                         ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
244 #define task_contributes_to_load(task)  \
245                                 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
246                                  (task->flags & PF_FROZEN) == 0)
247
248 #define __set_task_state(tsk, state_value)              \
249         do { (tsk)->state = (state_value); } while (0)
250 #define set_task_state(tsk, state_value)                \
251         set_mb((tsk)->state, (state_value))
252
253 /*
254  * set_current_state() includes a barrier so that the write of current->state
255  * is correctly serialised wrt the caller's subsequent test of whether to
256  * actually sleep:
257  *
258  *      set_current_state(TASK_UNINTERRUPTIBLE);
259  *      if (do_i_need_to_sleep())
260  *              schedule();
261  *
262  * If the caller does not need such serialisation then use __set_current_state()
263  */
264 #define __set_current_state(state_value)                        \
265         do { current->state = (state_value); } while (0)
266 #define set_current_state(state_value)          \
267         set_mb(current->state, (state_value))
268
269 /* Task command name length */
270 #define TASK_COMM_LEN 16
271
272 #include <linux/spinlock.h>
273
274 /*
275  * This serializes "schedule()" and also protects
276  * the run-queue from deletions/modifications (but
277  * _adding_ to the beginning of the run-queue has
278  * a separate lock).
279  */
280 extern rwlock_t tasklist_lock;
281 extern spinlock_t mmlist_lock;
282
283 struct task_struct;
284
285 #ifdef CONFIG_PROVE_RCU
286 extern int lockdep_tasklist_lock_is_held(void);
287 #endif /* #ifdef CONFIG_PROVE_RCU */
288
289 extern void sched_init(void);
290 extern void sched_init_smp(void);
291 extern asmlinkage void schedule_tail(struct task_struct *prev);
292 extern void init_idle(struct task_struct *idle, int cpu);
293 extern void init_idle_bootup_task(struct task_struct *idle);
294
295 extern int runqueue_is_locked(int cpu);
296
297 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
298 extern void nohz_balance_enter_idle(int cpu);
299 extern void set_cpu_sd_state_idle(void);
300 extern int get_nohz_timer_target(int pinned);
301 #else
302 static inline void nohz_balance_enter_idle(int cpu) { }
303 static inline void set_cpu_sd_state_idle(void) { }
304 static inline int get_nohz_timer_target(int pinned)
305 {
306         return smp_processor_id();
307 }
308 #endif
309
310 /*
311  * Only dump TASK_* tasks. (0 for all tasks)
312  */
313 extern void show_state_filter(unsigned long state_filter);
314
315 static inline void show_state(void)
316 {
317         show_state_filter(0);
318 }
319
320 extern void show_regs(struct pt_regs *);
321
322 /*
323  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
324  * task), SP is the stack pointer of the first frame that should be shown in the back
325  * trace (or NULL if the entire call-chain of the task should be shown).
326  */
327 extern void show_stack(struct task_struct *task, unsigned long *sp);
328
329 void io_schedule(void);
330 long io_schedule_timeout(long timeout);
331
332 extern void cpu_init (void);
333 extern void trap_init(void);
334 extern void update_process_times(int user);
335 extern void scheduler_tick(void);
336
337 extern void sched_show_task(struct task_struct *p);
338
339 #ifdef CONFIG_LOCKUP_DETECTOR
340 extern void touch_softlockup_watchdog(void);
341 extern void touch_softlockup_watchdog_sync(void);
342 extern void touch_all_softlockup_watchdogs(void);
343 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
344                                   void __user *buffer,
345                                   size_t *lenp, loff_t *ppos);
346 extern unsigned int  softlockup_panic;
347 void lockup_detector_init(void);
348 #else
349 static inline void touch_softlockup_watchdog(void)
350 {
351 }
352 static inline void touch_softlockup_watchdog_sync(void)
353 {
354 }
355 static inline void touch_all_softlockup_watchdogs(void)
356 {
357 }
358 static inline void lockup_detector_init(void)
359 {
360 }
361 #endif
362
363 #ifdef CONFIG_DETECT_HUNG_TASK
364 void reset_hung_task_detector(void);
365 #else
366 static inline void reset_hung_task_detector(void)
367 {
368 }
369 #endif
370
371 /* Attach to any functions which should be ignored in wchan output. */
372 #define __sched         __attribute__((__section__(".sched.text")))
373
374 /* Linker adds these: start and end of __sched functions */
375 extern char __sched_text_start[], __sched_text_end[];
376
377 /* Is this address in the __sched functions? */
378 extern int in_sched_functions(unsigned long addr);
379
380 #define MAX_SCHEDULE_TIMEOUT    LONG_MAX
381 extern signed long schedule_timeout(signed long timeout);
382 extern signed long schedule_timeout_interruptible(signed long timeout);
383 extern signed long schedule_timeout_killable(signed long timeout);
384 extern signed long schedule_timeout_uninterruptible(signed long timeout);
385 asmlinkage void schedule(void);
386 extern void schedule_preempt_disabled(void);
387
388 struct nsproxy;
389 struct user_namespace;
390
391 #ifdef CONFIG_MMU
392 extern void arch_pick_mmap_layout(struct mm_struct *mm);
393 extern unsigned long
394 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
395                        unsigned long, unsigned long);
396 extern unsigned long
397 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
398                           unsigned long len, unsigned long pgoff,
399                           unsigned long flags);
400 #else
401 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
402 #endif
403
404 #define SUID_DUMP_DISABLE       0       /* No setuid dumping */
405 #define SUID_DUMP_USER          1       /* Dump as user of process */
406 #define SUID_DUMP_ROOT          2       /* Dump as root */
407
408 /* mm flags */
409
410 /* for SUID_DUMP_* above */
411 #define MMF_DUMPABLE_BITS 2
412 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
413
414 extern void set_dumpable(struct mm_struct *mm, int value);
415 /*
416  * This returns the actual value of the suid_dumpable flag. For things
417  * that are using this for checking for privilege transitions, it must
418  * test against SUID_DUMP_USER rather than treating it as a boolean
419  * value.
420  */
421 static inline int __get_dumpable(unsigned long mm_flags)
422 {
423         return mm_flags & MMF_DUMPABLE_MASK;
424 }
425
426 static inline int get_dumpable(struct mm_struct *mm)
427 {
428         return __get_dumpable(mm->flags);
429 }
430
431 /* coredump filter bits */
432 #define MMF_DUMP_ANON_PRIVATE   2
433 #define MMF_DUMP_ANON_SHARED    3
434 #define MMF_DUMP_MAPPED_PRIVATE 4
435 #define MMF_DUMP_MAPPED_SHARED  5
436 #define MMF_DUMP_ELF_HEADERS    6
437 #define MMF_DUMP_HUGETLB_PRIVATE 7
438 #define MMF_DUMP_HUGETLB_SHARED  8
439
440 #define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
441 #define MMF_DUMP_FILTER_BITS    7
442 #define MMF_DUMP_FILTER_MASK \
443         (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
444 #define MMF_DUMP_FILTER_DEFAULT \
445         ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
446          (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
447
448 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
449 # define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
450 #else
451 # define MMF_DUMP_MASK_DEFAULT_ELF      0
452 #endif
453                                         /* leave room for more dump flags */
454 #define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
455 #define MMF_VM_HUGEPAGE         17      /* set when VM_HUGEPAGE is set on vma */
456 #define MMF_EXE_FILE_CHANGED    18      /* see prctl_set_mm_exe_file() */
457
458 #define MMF_HAS_UPROBES         19      /* has uprobes */
459 #define MMF_RECALC_UPROBES      20      /* MMF_HAS_UPROBES can be wrong */
460
461 #define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
462
463 struct sighand_struct {
464         atomic_t                count;
465         struct k_sigaction      action[_NSIG];
466         spinlock_t              siglock;
467         wait_queue_head_t       signalfd_wqh;
468 };
469
470 struct pacct_struct {
471         int                     ac_flag;
472         long                    ac_exitcode;
473         unsigned long           ac_mem;
474         cputime_t               ac_utime, ac_stime;
475         unsigned long           ac_minflt, ac_majflt;
476 };
477
478 struct cpu_itimer {
479         cputime_t expires;
480         cputime_t incr;
481         u32 error;
482         u32 incr_error;
483 };
484
485 /**
486  * struct cputime - snaphsot of system and user cputime
487  * @utime: time spent in user mode
488  * @stime: time spent in system mode
489  *
490  * Gathers a generic snapshot of user and system time.
491  */
492 struct cputime {
493         cputime_t utime;
494         cputime_t stime;
495 };
496
497 /**
498  * struct task_cputime - collected CPU time counts
499  * @utime:              time spent in user mode, in &cputime_t units
500  * @stime:              time spent in kernel mode, in &cputime_t units
501  * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
502  *
503  * This is an extension of struct cputime that includes the total runtime
504  * spent by the task from the scheduler point of view.
505  *
506  * As a result, this structure groups together three kinds of CPU time
507  * that are tracked for threads and thread groups.  Most things considering
508  * CPU time want to group these counts together and treat all three
509  * of them in parallel.
510  */
511 struct task_cputime {
512         cputime_t utime;
513         cputime_t stime;
514         unsigned long long sum_exec_runtime;
515 };
516 /* Alternate field names when used to cache expirations. */
517 #define prof_exp        stime
518 #define virt_exp        utime
519 #define sched_exp       sum_exec_runtime
520
521 #define INIT_CPUTIME    \
522         (struct task_cputime) {                                 \
523                 .utime = 0,                                     \
524                 .stime = 0,                                     \
525                 .sum_exec_runtime = 0,                          \
526         }
527
528 #ifdef CONFIG_PREEMPT_COUNT
529 #define PREEMPT_DISABLED        (1 + PREEMPT_ENABLED)
530 #else
531 #define PREEMPT_DISABLED        PREEMPT_ENABLED
532 #endif
533
534 /*
535  * Disable preemption until the scheduler is running.
536  * Reset by start_kernel()->sched_init()->init_idle().
537  *
538  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
539  * before the scheduler is active -- see should_resched().
540  */
541 #define INIT_PREEMPT_COUNT      (PREEMPT_DISABLED + PREEMPT_ACTIVE)
542
543 /**
544  * struct thread_group_cputimer - thread group interval timer counts
545  * @cputime:            thread group interval timers.
546  * @running:            non-zero when there are timers running and
547  *                      @cputime receives updates.
548  * @lock:               lock for fields in this struct.
549  *
550  * This structure contains the version of task_cputime, above, that is
551  * used for thread group CPU timer calculations.
552  */
553 struct thread_group_cputimer {
554         struct task_cputime cputime;
555         int running;
556         raw_spinlock_t lock;
557 };
558
559 #include <linux/rwsem.h>
560 struct autogroup;
561
562 /*
563  * NOTE! "signal_struct" does not have its own
564  * locking, because a shared signal_struct always
565  * implies a shared sighand_struct, so locking
566  * sighand_struct is always a proper superset of
567  * the locking of signal_struct.
568  */
569 struct signal_struct {
570         atomic_t                sigcnt;
571         atomic_t                live;
572         int                     nr_threads;
573         struct list_head        thread_head;
574
575         wait_queue_head_t       wait_chldexit;  /* for wait4() */
576
577         /* current thread group signal load-balancing target: */
578         struct task_struct      *curr_target;
579
580         /* shared signal handling: */
581         struct sigpending       shared_pending;
582
583         /* thread group exit support */
584         int                     group_exit_code;
585         /* overloaded:
586          * - notify group_exit_task when ->count is equal to notify_count
587          * - everyone except group_exit_task is stopped during signal delivery
588          *   of fatal signals, group_exit_task processes the signal.
589          */
590         int                     notify_count;
591         struct task_struct      *group_exit_task;
592
593         /* thread group stop support, overloads group_exit_code too */
594         int                     group_stop_count;
595         unsigned int            flags; /* see SIGNAL_* flags below */
596
597         /*
598          * PR_SET_CHILD_SUBREAPER marks a process, like a service
599          * manager, to re-parent orphan (double-forking) child processes
600          * to this process instead of 'init'. The service manager is
601          * able to receive SIGCHLD signals and is able to investigate
602          * the process until it calls wait(). All children of this
603          * process will inherit a flag if they should look for a
604          * child_subreaper process at exit.
605          */
606         unsigned int            is_child_subreaper:1;
607         unsigned int            has_child_subreaper:1;
608
609         /* POSIX.1b Interval Timers */
610         int                     posix_timer_id;
611         struct list_head        posix_timers;
612
613         /* ITIMER_REAL timer for the process */
614         struct hrtimer real_timer;
615         struct pid *leader_pid;
616         ktime_t it_real_incr;
617
618         /*
619          * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
620          * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
621          * values are defined to 0 and 1 respectively
622          */
623         struct cpu_itimer it[2];
624
625         /*
626          * Thread group totals for process CPU timers.
627          * See thread_group_cputimer(), et al, for details.
628          */
629         struct thread_group_cputimer cputimer;
630
631         /* Earliest-expiration cache. */
632         struct task_cputime cputime_expires;
633
634         struct list_head cpu_timers[3];
635
636         struct pid *tty_old_pgrp;
637
638         /* boolean value for session group leader */
639         int leader;
640
641         struct tty_struct *tty; /* NULL if no tty */
642
643 #ifdef CONFIG_SCHED_AUTOGROUP
644         struct autogroup *autogroup;
645 #endif
646         /*
647          * Cumulative resource counters for dead threads in the group,
648          * and for reaped dead child processes forked by this group.
649          * Live threads maintain their own counters and add to these
650          * in __exit_signal, except for the group leader.
651          */
652         cputime_t utime, stime, cutime, cstime;
653         cputime_t gtime;
654         cputime_t cgtime;
655 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
656         struct cputime prev_cputime;
657 #endif
658         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
659         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
660         unsigned long inblock, oublock, cinblock, coublock;
661         unsigned long maxrss, cmaxrss;
662         struct task_io_accounting ioac;
663
664         /*
665          * Cumulative ns of schedule CPU time fo dead threads in the
666          * group, not including a zombie group leader, (This only differs
667          * from jiffies_to_ns(utime + stime) if sched_clock uses something
668          * other than jiffies.)
669          */
670         unsigned long long sum_sched_runtime;
671
672         /*
673          * We don't bother to synchronize most readers of this at all,
674          * because there is no reader checking a limit that actually needs
675          * to get both rlim_cur and rlim_max atomically, and either one
676          * alone is a single word that can safely be read normally.
677          * getrlimit/setrlimit use task_lock(current->group_leader) to
678          * protect this instead of the siglock, because they really
679          * have no need to disable irqs.
680          */
681         struct rlimit rlim[RLIM_NLIMITS];
682
683 #ifdef CONFIG_BSD_PROCESS_ACCT
684         struct pacct_struct pacct;      /* per-process accounting information */
685 #endif
686 #ifdef CONFIG_TASKSTATS
687         struct taskstats *stats;
688 #endif
689 #ifdef CONFIG_AUDIT
690         unsigned audit_tty;
691         unsigned audit_tty_log_passwd;
692         struct tty_audit_buf *tty_audit_buf;
693 #endif
694 #ifdef CONFIG_CGROUPS
695         /*
696          * group_rwsem prevents new tasks from entering the threadgroup and
697          * member tasks from exiting,a more specifically, setting of
698          * PF_EXITING.  fork and exit paths are protected with this rwsem
699          * using threadgroup_change_begin/end().  Users which require
700          * threadgroup to remain stable should use threadgroup_[un]lock()
701          * which also takes care of exec path.  Currently, cgroup is the
702          * only user.
703          */
704         struct rw_semaphore group_rwsem;
705 #endif
706
707         oom_flags_t oom_flags;
708         short oom_score_adj;            /* OOM kill score adjustment */
709         short oom_score_adj_min;        /* OOM kill score adjustment min value.
710                                          * Only settable by CAP_SYS_RESOURCE. */
711
712         struct mutex cred_guard_mutex;  /* guard against foreign influences on
713                                          * credential calculations
714                                          * (notably. ptrace) */
715 };
716
717 /*
718  * Bits in flags field of signal_struct.
719  */
720 #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
721 #define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
722 #define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
723 #define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
724 /*
725  * Pending notifications to parent.
726  */
727 #define SIGNAL_CLD_STOPPED      0x00000010
728 #define SIGNAL_CLD_CONTINUED    0x00000020
729 #define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
730
731 #define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
732
733 /* If true, all threads except ->group_exit_task have pending SIGKILL */
734 static inline int signal_group_exit(const struct signal_struct *sig)
735 {
736         return  (sig->flags & SIGNAL_GROUP_EXIT) ||
737                 (sig->group_exit_task != NULL);
738 }
739
740 /*
741  * Some day this will be a full-fledged user tracking system..
742  */
743 struct user_struct {
744         atomic_t __count;       /* reference count */
745         atomic_t processes;     /* How many processes does this user have? */
746         atomic_t sigpending;    /* How many pending signals does this user have? */
747 #ifdef CONFIG_INOTIFY_USER
748         atomic_t inotify_watches; /* How many inotify watches does this user have? */
749         atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
750 #endif
751 #ifdef CONFIG_FANOTIFY
752         atomic_t fanotify_listeners;
753 #endif
754 #ifdef CONFIG_EPOLL
755         atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
756 #endif
757 #ifdef CONFIG_POSIX_MQUEUE
758         /* protected by mq_lock */
759         unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
760 #endif
761         unsigned long locked_shm; /* How many pages of mlocked shm ? */
762
763 #ifdef CONFIG_KEYS
764         struct key *uid_keyring;        /* UID specific keyring */
765         struct key *session_keyring;    /* UID's default session keyring */
766 #endif
767
768         /* Hash table maintenance information */
769         struct hlist_node uidhash_node;
770         kuid_t uid;
771
772 #ifdef CONFIG_PERF_EVENTS
773         atomic_long_t locked_vm;
774 #endif
775 };
776
777 extern int uids_sysfs_init(void);
778
779 extern struct user_struct *find_user(kuid_t);
780
781 extern struct user_struct root_user;
782 #define INIT_USER (&root_user)
783
784
785 struct backing_dev_info;
786 struct reclaim_state;
787
788 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
789 struct sched_info {
790         /* cumulative counters */
791         unsigned long pcount;         /* # of times run on this cpu */
792         unsigned long long run_delay; /* time spent waiting on a runqueue */
793
794         /* timestamps */
795         unsigned long long last_arrival,/* when we last ran on a cpu */
796                            last_queued; /* when we were last queued to run */
797 };
798 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
799
800 #ifdef CONFIG_TASK_DELAY_ACCT
801 struct task_delay_info {
802         spinlock_t      lock;
803         unsigned int    flags;  /* Private per-task flags */
804
805         /* For each stat XXX, add following, aligned appropriately
806          *
807          * struct timespec XXX_start, XXX_end;
808          * u64 XXX_delay;
809          * u32 XXX_count;
810          *
811          * Atomicity of updates to XXX_delay, XXX_count protected by
812          * single lock above (split into XXX_lock if contention is an issue).
813          */
814
815         /*
816          * XXX_count is incremented on every XXX operation, the delay
817          * associated with the operation is added to XXX_delay.
818          * XXX_delay contains the accumulated delay time in nanoseconds.
819          */
820         struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
821         u64 blkio_delay;        /* wait for sync block io completion */
822         u64 swapin_delay;       /* wait for swapin block io completion */
823         u32 blkio_count;        /* total count of the number of sync block */
824                                 /* io operations performed */
825         u32 swapin_count;       /* total count of the number of swapin block */
826                                 /* io operations performed */
827
828         struct timespec freepages_start, freepages_end;
829         u64 freepages_delay;    /* wait for memory reclaim */
830         u32 freepages_count;    /* total count of memory reclaim */
831 };
832 #endif  /* CONFIG_TASK_DELAY_ACCT */
833
834 static inline int sched_info_on(void)
835 {
836 #ifdef CONFIG_SCHEDSTATS
837         return 1;
838 #elif defined(CONFIG_TASK_DELAY_ACCT)
839         extern int delayacct_on;
840         return delayacct_on;
841 #else
842         return 0;
843 #endif
844 }
845
846 enum cpu_idle_type {
847         CPU_IDLE,
848         CPU_NOT_IDLE,
849         CPU_NEWLY_IDLE,
850         CPU_MAX_IDLE_TYPES
851 };
852
853 /*
854  * Increase resolution of cpu_capacity calculations
855  */
856 #define SCHED_CAPACITY_SHIFT    10
857 #define SCHED_CAPACITY_SCALE    (1L << SCHED_CAPACITY_SHIFT)
858
859 /*
860  * sched-domains (multiprocessor balancing) declarations:
861  */
862 #ifdef CONFIG_SMP
863 #define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
864 #define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
865 #define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
866 #define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
867 #define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
868 #define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
869 #define SD_SHARE_CPUCAPACITY    0x0080  /* Domain members share cpu power */
870 #define SD_SHARE_POWERDOMAIN    0x0100  /* Domain members share power domain */
871 #define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
872 #define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
873 #define SD_ASYM_PACKING         0x0800  /* Place busy groups earlier in the domain */
874 #define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
875 #define SD_OVERLAP              0x2000  /* sched_domains of this level overlap */
876 #define SD_NUMA                 0x4000  /* cross-node balancing */
877
878 #ifdef CONFIG_SCHED_SMT
879 static inline int cpu_smt_flags(void)
880 {
881         return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
882 }
883 #endif
884
885 #ifdef CONFIG_SCHED_MC
886 static inline int cpu_core_flags(void)
887 {
888         return SD_SHARE_PKG_RESOURCES;
889 }
890 #endif
891
892 #ifdef CONFIG_NUMA
893 static inline int cpu_numa_flags(void)
894 {
895         return SD_NUMA;
896 }
897 #endif
898
899 struct sched_domain_attr {
900         int relax_domain_level;
901 };
902
903 #define SD_ATTR_INIT    (struct sched_domain_attr) {    \
904         .relax_domain_level = -1,                       \
905 }
906
907 extern int sched_domain_level_max;
908
909 struct sched_group;
910
911 struct sched_domain {
912         /* These fields must be setup */
913         struct sched_domain *parent;    /* top domain must be null terminated */
914         struct sched_domain *child;     /* bottom domain must be null terminated */
915         struct sched_group *groups;     /* the balancing groups of the domain */
916         unsigned long min_interval;     /* Minimum balance interval ms */
917         unsigned long max_interval;     /* Maximum balance interval ms */
918         unsigned int busy_factor;       /* less balancing by factor if busy */
919         unsigned int imbalance_pct;     /* No balance until over watermark */
920         unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
921         unsigned int busy_idx;
922         unsigned int idle_idx;
923         unsigned int newidle_idx;
924         unsigned int wake_idx;
925         unsigned int forkexec_idx;
926         unsigned int smt_gain;
927
928         int nohz_idle;                  /* NOHZ IDLE status */
929         int flags;                      /* See SD_* */
930         int level;
931
932         /* Runtime fields. */
933         unsigned long last_balance;     /* init to jiffies. units in jiffies */
934         unsigned int balance_interval;  /* initialise to 1. units in ms. */
935         unsigned int nr_balance_failed; /* initialise to 0 */
936
937         /* idle_balance() stats */
938         u64 max_newidle_lb_cost;
939         unsigned long next_decay_max_lb_cost;
940
941 #ifdef CONFIG_SCHEDSTATS
942         /* load_balance() stats */
943         unsigned int lb_count[CPU_MAX_IDLE_TYPES];
944         unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
945         unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
946         unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
947         unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
948         unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
949         unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
950         unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
951
952         /* Active load balancing */
953         unsigned int alb_count;
954         unsigned int alb_failed;
955         unsigned int alb_pushed;
956
957         /* SD_BALANCE_EXEC stats */
958         unsigned int sbe_count;
959         unsigned int sbe_balanced;
960         unsigned int sbe_pushed;
961
962         /* SD_BALANCE_FORK stats */
963         unsigned int sbf_count;
964         unsigned int sbf_balanced;
965         unsigned int sbf_pushed;
966
967         /* try_to_wake_up() stats */
968         unsigned int ttwu_wake_remote;
969         unsigned int ttwu_move_affine;
970         unsigned int ttwu_move_balance;
971 #endif
972 #ifdef CONFIG_SCHED_DEBUG
973         char *name;
974 #endif
975         union {
976                 void *private;          /* used during construction */
977                 struct rcu_head rcu;    /* used during destruction */
978         };
979
980         unsigned int span_weight;
981         /*
982          * Span of all CPUs in this domain.
983          *
984          * NOTE: this field is variable length. (Allocated dynamically
985          * by attaching extra space to the end of the structure,
986          * depending on how many CPUs the kernel has booted up with)
987          */
988         unsigned long span[0];
989 };
990
991 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
992 {
993         return to_cpumask(sd->span);
994 }
995
996 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
997                                     struct sched_domain_attr *dattr_new);
998
999 /* Allocate an array of sched domains, for partition_sched_domains(). */
1000 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1001 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1002
1003 bool cpus_share_cache(int this_cpu, int that_cpu);
1004
1005 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1006 typedef int (*sched_domain_flags_f)(void);
1007
1008 #define SDTL_OVERLAP    0x01
1009
1010 struct sd_data {
1011         struct sched_domain **__percpu sd;
1012         struct sched_group **__percpu sg;
1013         struct sched_group_capacity **__percpu sgc;
1014 };
1015
1016 struct sched_domain_topology_level {
1017         sched_domain_mask_f mask;
1018         sched_domain_flags_f sd_flags;
1019         int                 flags;
1020         int                 numa_level;
1021         struct sd_data      data;
1022 #ifdef CONFIG_SCHED_DEBUG
1023         char                *name;
1024 #endif
1025 };
1026
1027 extern struct sched_domain_topology_level *sched_domain_topology;
1028
1029 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1030
1031 #ifdef CONFIG_SCHED_DEBUG
1032 # define SD_INIT_NAME(type)             .name = #type
1033 #else
1034 # define SD_INIT_NAME(type)
1035 #endif
1036
1037 #else /* CONFIG_SMP */
1038
1039 struct sched_domain_attr;
1040
1041 static inline void
1042 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1043                         struct sched_domain_attr *dattr_new)
1044 {
1045 }
1046
1047 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1048 {
1049         return true;
1050 }
1051
1052 #endif  /* !CONFIG_SMP */
1053
1054
1055 struct io_context;                      /* See blkdev.h */
1056
1057
1058 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1059 extern void prefetch_stack(struct task_struct *t);
1060 #else
1061 static inline void prefetch_stack(struct task_struct *t) { }
1062 #endif
1063
1064 struct audit_context;           /* See audit.c */
1065 struct mempolicy;
1066 struct pipe_inode_info;
1067 struct uts_namespace;
1068
1069 struct load_weight {
1070         unsigned long weight;
1071         u32 inv_weight;
1072 };
1073
1074 struct sched_avg {
1075         /*
1076          * These sums represent an infinite geometric series and so are bound
1077          * above by 1024/(1-y).  Thus we only need a u32 to store them for all
1078          * choices of y < 1-2^(-32)*1024.
1079          */
1080         u32 runnable_avg_sum, runnable_avg_period;
1081         u64 last_runnable_update;
1082         s64 decay_count;
1083         unsigned long load_avg_contrib;
1084 };
1085
1086 #ifdef CONFIG_SCHEDSTATS
1087 struct sched_statistics {
1088         u64                     wait_start;
1089         u64                     wait_max;
1090         u64                     wait_count;
1091         u64                     wait_sum;
1092         u64                     iowait_count;
1093         u64                     iowait_sum;
1094
1095         u64                     sleep_start;
1096         u64                     sleep_max;
1097         s64                     sum_sleep_runtime;
1098
1099         u64                     block_start;
1100         u64                     block_max;
1101         u64                     exec_max;
1102         u64                     slice_max;
1103
1104         u64                     nr_migrations_cold;
1105         u64                     nr_failed_migrations_affine;
1106         u64                     nr_failed_migrations_running;
1107         u64                     nr_failed_migrations_hot;
1108         u64                     nr_forced_migrations;
1109
1110         u64                     nr_wakeups;
1111         u64                     nr_wakeups_sync;
1112         u64                     nr_wakeups_migrate;
1113         u64                     nr_wakeups_local;
1114         u64                     nr_wakeups_remote;
1115         u64                     nr_wakeups_affine;
1116         u64                     nr_wakeups_affine_attempts;
1117         u64                     nr_wakeups_passive;
1118         u64                     nr_wakeups_idle;
1119 };
1120 #endif
1121
1122 struct sched_entity {
1123         struct load_weight      load;           /* for load-balancing */
1124         struct rb_node          run_node;
1125         struct list_head        group_node;
1126         unsigned int            on_rq;
1127
1128         u64                     exec_start;
1129         u64                     sum_exec_runtime;
1130         u64                     vruntime;
1131         u64                     prev_sum_exec_runtime;
1132
1133         u64                     nr_migrations;
1134
1135 #ifdef CONFIG_SCHEDSTATS
1136         struct sched_statistics statistics;
1137 #endif
1138
1139 #ifdef CONFIG_FAIR_GROUP_SCHED
1140         int                     depth;
1141         struct sched_entity     *parent;
1142         /* rq on which this entity is (to be) queued: */
1143         struct cfs_rq           *cfs_rq;
1144         /* rq "owned" by this entity/group: */
1145         struct cfs_rq           *my_q;
1146 #endif
1147
1148 #ifdef CONFIG_SMP
1149         /* Per-entity load-tracking */
1150         struct sched_avg        avg;
1151 #endif
1152 };
1153
1154 struct sched_rt_entity {
1155         struct list_head run_list;
1156         unsigned long timeout;
1157         unsigned long watchdog_stamp;
1158         unsigned int time_slice;
1159
1160         struct sched_rt_entity *back;
1161 #ifdef CONFIG_RT_GROUP_SCHED
1162         struct sched_rt_entity  *parent;
1163         /* rq on which this entity is (to be) queued: */
1164         struct rt_rq            *rt_rq;
1165         /* rq "owned" by this entity/group: */
1166         struct rt_rq            *my_q;
1167 #endif
1168 };
1169
1170 struct sched_dl_entity {
1171         struct rb_node  rb_node;
1172
1173         /*
1174          * Original scheduling parameters. Copied here from sched_attr
1175          * during sched_setattr(), they will remain the same until
1176          * the next sched_setattr().
1177          */
1178         u64 dl_runtime;         /* maximum runtime for each instance    */
1179         u64 dl_deadline;        /* relative deadline of each instance   */
1180         u64 dl_period;          /* separation of two instances (period) */
1181         u64 dl_bw;              /* dl_runtime / dl_deadline             */
1182
1183         /*
1184          * Actual scheduling parameters. Initialized with the values above,
1185          * they are continously updated during task execution. Note that
1186          * the remaining runtime could be < 0 in case we are in overrun.
1187          */
1188         s64 runtime;            /* remaining runtime for this instance  */
1189         u64 deadline;           /* absolute deadline for this instance  */
1190         unsigned int flags;     /* specifying the scheduler behaviour   */
1191
1192         /*
1193          * Some bool flags:
1194          *
1195          * @dl_throttled tells if we exhausted the runtime. If so, the
1196          * task has to wait for a replenishment to be performed at the
1197          * next firing of dl_timer.
1198          *
1199          * @dl_new tells if a new instance arrived. If so we must
1200          * start executing it with full runtime and reset its absolute
1201          * deadline;
1202          *
1203          * @dl_boosted tells if we are boosted due to DI. If so we are
1204          * outside bandwidth enforcement mechanism (but only until we
1205          * exit the critical section);
1206          *
1207          * @dl_yielded tells if task gave up the cpu before consuming
1208          * all its available runtime during the last job.
1209          */
1210         int dl_throttled, dl_new, dl_boosted, dl_yielded;
1211
1212         /*
1213          * Bandwidth enforcement timer. Each -deadline task has its
1214          * own bandwidth to be enforced, thus we need one timer per task.
1215          */
1216         struct hrtimer dl_timer;
1217 };
1218
1219 struct rcu_node;
1220
1221 enum perf_event_task_context {
1222         perf_invalid_context = -1,
1223         perf_hw_context = 0,
1224         perf_sw_context,
1225         perf_nr_task_contexts,
1226 };
1227
1228 struct task_struct {
1229         volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1230         void *stack;
1231         atomic_t usage;
1232         unsigned int flags;     /* per process flags, defined below */
1233         unsigned int ptrace;
1234
1235 #ifdef CONFIG_SMP
1236         struct llist_node wake_entry;
1237         int on_cpu;
1238         struct task_struct *last_wakee;
1239         unsigned long wakee_flips;
1240         unsigned long wakee_flip_decay_ts;
1241
1242         int wake_cpu;
1243 #endif
1244         int on_rq;
1245
1246         int prio, static_prio, normal_prio;
1247         unsigned int rt_priority;
1248         const struct sched_class *sched_class;
1249         struct sched_entity se;
1250         struct sched_rt_entity rt;
1251 #ifdef CONFIG_CGROUP_SCHED
1252         struct task_group *sched_task_group;
1253 #endif
1254         struct sched_dl_entity dl;
1255
1256 #ifdef CONFIG_PREEMPT_NOTIFIERS
1257         /* list of struct preempt_notifier: */
1258         struct hlist_head preempt_notifiers;
1259 #endif
1260
1261 #ifdef CONFIG_BLK_DEV_IO_TRACE
1262         unsigned int btrace_seq;
1263 #endif
1264
1265         unsigned int policy;
1266         int nr_cpus_allowed;
1267         cpumask_t cpus_allowed;
1268
1269 #ifdef CONFIG_PREEMPT_RCU
1270         int rcu_read_lock_nesting;
1271         char rcu_read_unlock_special;
1272         struct list_head rcu_node_entry;
1273 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1274 #ifdef CONFIG_TREE_PREEMPT_RCU
1275         struct rcu_node *rcu_blocked_node;
1276 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1277 #ifdef CONFIG_RCU_BOOST
1278         struct rt_mutex *rcu_boost_mutex;
1279 #endif /* #ifdef CONFIG_RCU_BOOST */
1280
1281 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1282         struct sched_info sched_info;
1283 #endif
1284
1285         struct list_head rq_tasks;
1286         struct list_head tasks;
1287 #ifdef CONFIG_SMP
1288         struct plist_node pushable_tasks;
1289         struct rb_node pushable_dl_tasks;
1290 #endif
1291
1292         struct mm_struct *mm, *active_mm;
1293 #ifdef CONFIG_COMPAT_BRK
1294         unsigned brk_randomized:1;
1295 #endif
1296         /* per-thread vma caching */
1297         u32 vmacache_seqnum;
1298         struct vm_area_struct *vmacache[VMACACHE_SIZE];
1299 #if defined(SPLIT_RSS_COUNTING)
1300         struct task_rss_stat    rss_stat;
1301 #endif
1302 /* task state */
1303         int exit_state;
1304         int exit_code, exit_signal;
1305         int pdeath_signal;  /*  The signal sent when the parent dies  */
1306         unsigned int jobctl;    /* JOBCTL_*, siglock protected */
1307
1308         /* Used for emulating ABI behavior of previous Linux versions */
1309         unsigned int personality;
1310
1311         unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1312                                  * execve */
1313         unsigned in_iowait:1;
1314
1315         /* task may not gain privileges */
1316         unsigned no_new_privs:1;
1317
1318         /* Revert to default priority/policy when forking */
1319         unsigned sched_reset_on_fork:1;
1320         unsigned sched_contributes_to_load:1;
1321
1322         pid_t pid;
1323         pid_t tgid;
1324
1325 #ifdef CONFIG_CC_STACKPROTECTOR
1326         /* Canary value for the -fstack-protector gcc feature */
1327         unsigned long stack_canary;
1328 #endif
1329         /*
1330          * pointers to (original) parent process, youngest child, younger sibling,
1331          * older sibling, respectively.  (p->father can be replaced with
1332          * p->real_parent->pid)
1333          */
1334         struct task_struct __rcu *real_parent; /* real parent process */
1335         struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1336         /*
1337          * children/sibling forms the list of my natural children
1338          */
1339         struct list_head children;      /* list of my children */
1340         struct list_head sibling;       /* linkage in my parent's children list */
1341         struct task_struct *group_leader;       /* threadgroup leader */
1342
1343         /*
1344          * ptraced is the list of tasks this task is using ptrace on.
1345          * This includes both natural children and PTRACE_ATTACH targets.
1346          * p->ptrace_entry is p's link on the p->parent->ptraced list.
1347          */
1348         struct list_head ptraced;
1349         struct list_head ptrace_entry;
1350
1351         /* PID/PID hash table linkage. */
1352         struct pid_link pids[PIDTYPE_MAX];
1353         struct list_head thread_group;
1354         struct list_head thread_node;
1355
1356         struct completion *vfork_done;          /* for vfork() */
1357         int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1358         int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1359
1360         cputime_t utime, stime, utimescaled, stimescaled;
1361         cputime_t gtime;
1362 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1363         struct cputime prev_cputime;
1364 #endif
1365 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1366         seqlock_t vtime_seqlock;
1367         unsigned long long vtime_snap;
1368         enum {
1369                 VTIME_SLEEPING = 0,
1370                 VTIME_USER,
1371                 VTIME_SYS,
1372         } vtime_snap_whence;
1373 #endif
1374         unsigned long nvcsw, nivcsw; /* context switch counts */
1375         struct timespec start_time;             /* monotonic time */
1376         struct timespec real_start_time;        /* boot based time */
1377 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1378         unsigned long min_flt, maj_flt;
1379
1380         struct task_cputime cputime_expires;
1381         struct list_head cpu_timers[3];
1382
1383 /* process credentials */
1384         const struct cred __rcu *real_cred; /* objective and real subjective task
1385                                          * credentials (COW) */
1386         const struct cred __rcu *cred;  /* effective (overridable) subjective task
1387                                          * credentials (COW) */
1388         char comm[TASK_COMM_LEN]; /* executable name excluding path
1389                                      - access with [gs]et_task_comm (which lock
1390                                        it with task_lock())
1391                                      - initialized normally by setup_new_exec */
1392 /* file system info */
1393         int link_count, total_link_count;
1394 #ifdef CONFIG_SYSVIPC
1395 /* ipc stuff */
1396         struct sysv_sem sysvsem;
1397 #endif
1398 #ifdef CONFIG_DETECT_HUNG_TASK
1399 /* hung task detection */
1400         unsigned long last_switch_count;
1401 #endif
1402 /* CPU-specific state of this task */
1403         struct thread_struct thread;
1404 /* filesystem information */
1405         struct fs_struct *fs;
1406 /* open file information */
1407         struct files_struct *files;
1408 /* namespaces */
1409         struct nsproxy *nsproxy;
1410 /* signal handlers */
1411         struct signal_struct *signal;
1412         struct sighand_struct *sighand;
1413
1414         sigset_t blocked, real_blocked;
1415         sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1416         struct sigpending pending;
1417
1418         unsigned long sas_ss_sp;
1419         size_t sas_ss_size;
1420         int (*notifier)(void *priv);
1421         void *notifier_data;
1422         sigset_t *notifier_mask;
1423         struct callback_head *task_works;
1424
1425         struct audit_context *audit_context;
1426 #ifdef CONFIG_AUDITSYSCALL
1427         kuid_t loginuid;
1428         unsigned int sessionid;
1429 #endif
1430         struct seccomp seccomp;
1431
1432 /* Thread group tracking */
1433         u32 parent_exec_id;
1434         u32 self_exec_id;
1435 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1436  * mempolicy */
1437         spinlock_t alloc_lock;
1438
1439         /* Protection of the PI data structures: */
1440         raw_spinlock_t pi_lock;
1441
1442 #ifdef CONFIG_RT_MUTEXES
1443         /* PI waiters blocked on a rt_mutex held by this task */
1444         struct rb_root pi_waiters;
1445         struct rb_node *pi_waiters_leftmost;
1446         /* Deadlock detection and priority inheritance handling */
1447         struct rt_mutex_waiter *pi_blocked_on;
1448         /* Top pi_waiters task */
1449         struct task_struct *pi_top_task;
1450 #endif
1451
1452 #ifdef CONFIG_DEBUG_MUTEXES
1453         /* mutex deadlock detection */
1454         struct mutex_waiter *blocked_on;
1455 #endif
1456 #ifdef CONFIG_TRACE_IRQFLAGS
1457         unsigned int irq_events;
1458         unsigned long hardirq_enable_ip;
1459         unsigned long hardirq_disable_ip;
1460         unsigned int hardirq_enable_event;
1461         unsigned int hardirq_disable_event;
1462         int hardirqs_enabled;
1463         int hardirq_context;
1464         unsigned long softirq_disable_ip;
1465         unsigned long softirq_enable_ip;
1466         unsigned int softirq_disable_event;
1467         unsigned int softirq_enable_event;
1468         int softirqs_enabled;
1469         int softirq_context;
1470 #endif
1471 #ifdef CONFIG_LOCKDEP
1472 # define MAX_LOCK_DEPTH 48UL
1473         u64 curr_chain_key;
1474         int lockdep_depth;
1475         unsigned int lockdep_recursion;
1476         struct held_lock held_locks[MAX_LOCK_DEPTH];
1477         gfp_t lockdep_reclaim_gfp;
1478 #endif
1479
1480 /* journalling filesystem info */
1481         void *journal_info;
1482
1483 /* stacked block device info */
1484         struct bio_list *bio_list;
1485
1486 #ifdef CONFIG_BLOCK
1487 /* stack plugging */
1488         struct blk_plug *plug;
1489 #endif
1490
1491 /* VM state */
1492         struct reclaim_state *reclaim_state;
1493
1494         struct backing_dev_info *backing_dev_info;
1495
1496         struct io_context *io_context;
1497
1498         unsigned long ptrace_message;
1499         siginfo_t *last_siginfo; /* For ptrace use.  */
1500         struct task_io_accounting ioac;
1501 #if defined(CONFIG_TASK_XACCT)
1502         u64 acct_rss_mem1;      /* accumulated rss usage */
1503         u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1504         cputime_t acct_timexpd; /* stime + utime since last update */
1505 #endif
1506 #ifdef CONFIG_CPUSETS
1507         nodemask_t mems_allowed;        /* Protected by alloc_lock */
1508         seqcount_t mems_allowed_seq;    /* Seqence no to catch updates */
1509         int cpuset_mem_spread_rotor;
1510         int cpuset_slab_spread_rotor;
1511 #endif
1512 #ifdef CONFIG_CGROUPS
1513         /* Control Group info protected by css_set_lock */
1514         struct css_set __rcu *cgroups;
1515         /* cg_list protected by css_set_lock and tsk->alloc_lock */
1516         struct list_head cg_list;
1517 #endif
1518 #ifdef CONFIG_FUTEX
1519         struct robust_list_head __user *robust_list;
1520 #ifdef CONFIG_COMPAT
1521         struct compat_robust_list_head __user *compat_robust_list;
1522 #endif
1523         struct list_head pi_state_list;
1524         struct futex_pi_state *pi_state_cache;
1525 #endif
1526 #ifdef CONFIG_PERF_EVENTS
1527         struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1528         struct mutex perf_event_mutex;
1529         struct list_head perf_event_list;
1530 #endif
1531 #ifdef CONFIG_DEBUG_PREEMPT
1532         unsigned long preempt_disable_ip;
1533 #endif
1534 #ifdef CONFIG_NUMA
1535         struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1536         short il_next;
1537         short pref_node_fork;
1538 #endif
1539 #ifdef CONFIG_NUMA_BALANCING
1540         int numa_scan_seq;
1541         unsigned int numa_scan_period;
1542         unsigned int numa_scan_period_max;
1543         int numa_preferred_nid;
1544         unsigned long numa_migrate_retry;
1545         u64 node_stamp;                 /* migration stamp  */
1546         u64 last_task_numa_placement;
1547         u64 last_sum_exec_runtime;
1548         struct callback_head numa_work;
1549
1550         struct list_head numa_entry;
1551         struct numa_group *numa_group;
1552
1553         /*
1554          * Exponential decaying average of faults on a per-node basis.
1555          * Scheduling placement decisions are made based on the these counts.
1556          * The values remain static for the duration of a PTE scan
1557          */
1558         unsigned long *numa_faults_memory;
1559         unsigned long total_numa_faults;
1560
1561         /*
1562          * numa_faults_buffer records faults per node during the current
1563          * scan window. When the scan completes, the counts in
1564          * numa_faults_memory decay and these values are copied.
1565          */
1566         unsigned long *numa_faults_buffer_memory;
1567
1568         /*
1569          * Track the nodes the process was running on when a NUMA hinting
1570          * fault was incurred.
1571          */
1572         unsigned long *numa_faults_cpu;
1573         unsigned long *numa_faults_buffer_cpu;
1574
1575         /*
1576          * numa_faults_locality tracks if faults recorded during the last
1577          * scan window were remote/local. The task scan period is adapted
1578          * based on the locality of the faults with different weights
1579          * depending on whether they were shared or private faults
1580          */
1581         unsigned long numa_faults_locality[2];
1582
1583         unsigned long numa_pages_migrated;
1584 #endif /* CONFIG_NUMA_BALANCING */
1585
1586         struct rcu_head rcu;
1587
1588         /*
1589          * cache last used pipe for splice
1590          */
1591         struct pipe_inode_info *splice_pipe;
1592
1593         struct page_frag task_frag;
1594
1595 #ifdef  CONFIG_TASK_DELAY_ACCT
1596         struct task_delay_info *delays;
1597 #endif
1598 #ifdef CONFIG_FAULT_INJECTION
1599         int make_it_fail;
1600 #endif
1601         /*
1602          * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1603          * balance_dirty_pages() for some dirty throttling pause
1604          */
1605         int nr_dirtied;
1606         int nr_dirtied_pause;
1607         unsigned long dirty_paused_when; /* start of a write-and-pause period */
1608
1609 #ifdef CONFIG_LATENCYTOP
1610         int latency_record_count;
1611         struct latency_record latency_record[LT_SAVECOUNT];
1612 #endif
1613         /*
1614          * time slack values; these are used to round up poll() and
1615          * select() etc timeout values. These are in nanoseconds.
1616          */
1617         unsigned long timer_slack_ns;
1618         unsigned long default_timer_slack_ns;
1619
1620 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1621         /* Index of current stored address in ret_stack */
1622         int curr_ret_stack;
1623         /* Stack of return addresses for return function tracing */
1624         struct ftrace_ret_stack *ret_stack;
1625         /* time stamp for last schedule */
1626         unsigned long long ftrace_timestamp;
1627         /*
1628          * Number of functions that haven't been traced
1629          * because of depth overrun.
1630          */
1631         atomic_t trace_overrun;
1632         /* Pause for the tracing */
1633         atomic_t tracing_graph_pause;
1634 #endif
1635 #ifdef CONFIG_TRACING
1636         /* state flags for use by tracers */
1637         unsigned long trace;
1638         /* bitmask and counter of trace recursion */
1639         unsigned long trace_recursion;
1640 #endif /* CONFIG_TRACING */
1641 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1642         struct memcg_batch_info {
1643                 int do_batch;   /* incremented when batch uncharge started */
1644                 struct mem_cgroup *memcg; /* target memcg of uncharge */
1645                 unsigned long nr_pages; /* uncharged usage */
1646                 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1647         } memcg_batch;
1648         unsigned int memcg_kmem_skip_account;
1649         struct memcg_oom_info {
1650                 struct mem_cgroup *memcg;
1651                 gfp_t gfp_mask;
1652                 int order;
1653                 unsigned int may_oom:1;
1654         } memcg_oom;
1655 #endif
1656 #ifdef CONFIG_UPROBES
1657         struct uprobe_task *utask;
1658 #endif
1659 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1660         unsigned int    sequential_io;
1661         unsigned int    sequential_io_avg;
1662 #endif
1663 #ifdef CONFIG_MOD_SCHED
1664         struct fw_task fw_task;
1665 #endif
1666 };
1667
1668 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1669 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1670
1671 #define TNF_MIGRATED    0x01
1672 #define TNF_NO_GROUP    0x02
1673 #define TNF_SHARED      0x04
1674 #define TNF_FAULT_LOCAL 0x08
1675
1676 #ifdef CONFIG_NUMA_BALANCING
1677 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1678 extern pid_t task_numa_group_id(struct task_struct *p);
1679 extern void set_numabalancing_state(bool enabled);
1680 extern void task_numa_free(struct task_struct *p);
1681 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1682                                         int src_nid, int dst_cpu);
1683 #else
1684 static inline void task_numa_fault(int last_node, int node, int pages,
1685                                    int flags)
1686 {
1687 }
1688 static inline pid_t task_numa_group_id(struct task_struct *p)
1689 {
1690         return 0;
1691 }
1692 static inline void set_numabalancing_state(bool enabled)
1693 {
1694 }
1695 static inline void task_numa_free(struct task_struct *p)
1696 {
1697 }
1698 static inline bool should_numa_migrate_memory(struct task_struct *p,
1699                                 struct page *page, int src_nid, int dst_cpu)
1700 {
1701         return true;
1702 }
1703 #endif
1704
1705 static inline struct pid *task_pid(struct task_struct *task)
1706 {
1707         return task->pids[PIDTYPE_PID].pid;
1708 }
1709
1710 static inline struct pid *task_tgid(struct task_struct *task)
1711 {
1712         return task->group_leader->pids[PIDTYPE_PID].pid;
1713 }
1714
1715 /*
1716  * Without tasklist or rcu lock it is not safe to dereference
1717  * the result of task_pgrp/task_session even if task == current,
1718  * we can race with another thread doing sys_setsid/sys_setpgid.
1719  */
1720 static inline struct pid *task_pgrp(struct task_struct *task)
1721 {
1722         return task->group_leader->pids[PIDTYPE_PGID].pid;
1723 }
1724
1725 static inline struct pid *task_session(struct task_struct *task)
1726 {
1727         return task->group_leader->pids[PIDTYPE_SID].pid;
1728 }
1729
1730 struct pid_namespace;
1731
1732 /*
1733  * the helpers to get the task's different pids as they are seen
1734  * from various namespaces
1735  *
1736  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1737  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1738  *                     current.
1739  * task_xid_nr_ns()  : id seen from the ns specified;
1740  *
1741  * set_task_vxid()   : assigns a virtual id to a task;
1742  *
1743  * see also pid_nr() etc in include/linux/pid.h
1744  */
1745 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1746                         struct pid_namespace *ns);
1747
1748 static inline pid_t task_pid_nr(struct task_struct *tsk)
1749 {
1750         return tsk->pid;
1751 }
1752
1753 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1754                                         struct pid_namespace *ns)
1755 {
1756         return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1757 }
1758
1759 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1760 {
1761         return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1762 }
1763
1764
1765 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1766 {
1767         return tsk->tgid;
1768 }
1769
1770 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1771
1772 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1773 {
1774         return pid_vnr(task_tgid(tsk));
1775 }
1776
1777
1778 static inline int pid_alive(const struct task_struct *p);
1779 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1780 {
1781         pid_t pid = 0;
1782
1783         rcu_read_lock();
1784         if (pid_alive(tsk))
1785                 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1786         rcu_read_unlock();
1787
1788         return pid;
1789 }
1790
1791 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1792 {
1793         return task_ppid_nr_ns(tsk, &init_pid_ns);
1794 }
1795
1796 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1797                                         struct pid_namespace *ns)
1798 {
1799         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1800 }
1801
1802 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1803 {
1804         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1805 }
1806
1807
1808 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1809                                         struct pid_namespace *ns)
1810 {
1811         return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1812 }
1813
1814 static inline pid_t task_session_vnr(struct task_struct *tsk)
1815 {
1816         return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1817 }
1818
1819 /* obsolete, do not use */
1820 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1821 {
1822         return task_pgrp_nr_ns(tsk, &init_pid_ns);
1823 }
1824
1825 /**
1826  * pid_alive - check that a task structure is not stale
1827  * @p: Task structure to be checked.
1828  *
1829  * Test if a process is not yet dead (at most zombie state)
1830  * If pid_alive fails, then pointers within the task structure
1831  * can be stale and must not be dereferenced.
1832  *
1833  * Return: 1 if the process is alive. 0 otherwise.
1834  */
1835 static inline int pid_alive(const struct task_struct *p)
1836 {
1837         return p->pids[PIDTYPE_PID].pid != NULL;
1838 }
1839
1840 /**
1841  * is_global_init - check if a task structure is init
1842  * @tsk: Task structure to be checked.
1843  *
1844  * Check if a task structure is the first user space task the kernel created.
1845  *
1846  * Return: 1 if the task structure is init. 0 otherwise.
1847  */
1848 static inline int is_global_init(struct task_struct *tsk)
1849 {
1850         return tsk->pid == 1;
1851 }
1852
1853 extern struct pid *cad_pid;
1854
1855 extern void free_task(struct task_struct *tsk);
1856 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1857
1858 extern void __put_task_struct(struct task_struct *t);
1859
1860 static inline void put_task_struct(struct task_struct *t)
1861 {
1862         if (atomic_dec_and_test(&t->usage))
1863                 __put_task_struct(t);
1864 }
1865
1866 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1867 extern void task_cputime(struct task_struct *t,
1868                          cputime_t *utime, cputime_t *stime);
1869 extern void task_cputime_scaled(struct task_struct *t,
1870                                 cputime_t *utimescaled, cputime_t *stimescaled);
1871 extern cputime_t task_gtime(struct task_struct *t);
1872 #else
1873 static inline void task_cputime(struct task_struct *t,
1874                                 cputime_t *utime, cputime_t *stime)
1875 {
1876         if (utime)
1877                 *utime = t->utime;
1878         if (stime)
1879                 *stime = t->stime;
1880 }
1881
1882 static inline void task_cputime_scaled(struct task_struct *t,
1883                                        cputime_t *utimescaled,
1884                                        cputime_t *stimescaled)
1885 {
1886         if (utimescaled)
1887                 *utimescaled = t->utimescaled;
1888         if (stimescaled)
1889                 *stimescaled = t->stimescaled;
1890 }
1891
1892 static inline cputime_t task_gtime(struct task_struct *t)
1893 {
1894         return t->gtime;
1895 }
1896 #endif
1897 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1898 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1899
1900 /*
1901  * Per process flags
1902  */
1903 #define PF_EXITING      0x00000004      /* getting shut down */
1904 #define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1905 #define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1906 #define PF_WQ_WORKER    0x00000020      /* I'm a workqueue worker */
1907 #define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1908 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1909 #define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1910 #define PF_DUMPCORE     0x00000200      /* dumped core */
1911 #define PF_SIGNALED     0x00000400      /* killed by a signal */
1912 #define PF_MEMALLOC     0x00000800      /* Allocating memory */
1913 #define PF_NPROC_EXCEEDED 0x00001000    /* set_user noticed that RLIMIT_NPROC was exceeded */
1914 #define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1915 #define PF_USED_ASYNC   0x00004000      /* used async_schedule*(), used by module init */
1916 #define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1917 #define PF_FROZEN       0x00010000      /* frozen for system suspend */
1918 #define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1919 #define PF_KSWAPD       0x00040000      /* I am kswapd */
1920 #define PF_MEMALLOC_NOIO 0x00080000     /* Allocating memory without IO involved */
1921 #define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1922 #define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1923 #define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1924 #define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1925 #define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1926 #define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1927 #define PF_NO_SETAFFINITY 0x04000000    /* Userland is not allowed to meddle with cpus_allowed */
1928 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1929 #define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1930 #define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezable */
1931 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
1932
1933 /*
1934  * Only the _current_ task can read/write to tsk->flags, but other
1935  * tasks can access tsk->flags in readonly mode for example
1936  * with tsk_used_math (like during threaded core dumping).
1937  * There is however an exception to this rule during ptrace
1938  * or during fork: the ptracer task is allowed to write to the
1939  * child->flags of its traced child (same goes for fork, the parent
1940  * can write to the child->flags), because we're guaranteed the
1941  * child is not running and in turn not changing child->flags
1942  * at the same time the parent does it.
1943  */
1944 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1945 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1946 #define clear_used_math() clear_stopped_child_used_math(current)
1947 #define set_used_math() set_stopped_child_used_math(current)
1948 #define conditional_stopped_child_used_math(condition, child) \
1949         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1950 #define conditional_used_math(condition) \
1951         conditional_stopped_child_used_math(condition, current)
1952 #define copy_to_stopped_child_used_math(child) \
1953         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1954 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1955 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1956 #define used_math() tsk_used_math(current)
1957
1958 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1959 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1960 {
1961         if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1962                 flags &= ~__GFP_IO;
1963         return flags;
1964 }
1965
1966 static inline unsigned int memalloc_noio_save(void)
1967 {
1968         unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1969         current->flags |= PF_MEMALLOC_NOIO;
1970         return flags;
1971 }
1972
1973 static inline void memalloc_noio_restore(unsigned int flags)
1974 {
1975         current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1976 }
1977
1978 /*
1979  * task->jobctl flags
1980  */
1981 #define JOBCTL_STOP_SIGMASK     0xffff  /* signr of the last group stop */
1982
1983 #define JOBCTL_STOP_DEQUEUED_BIT 16     /* stop signal dequeued */
1984 #define JOBCTL_STOP_PENDING_BIT 17      /* task should stop for group stop */
1985 #define JOBCTL_STOP_CONSUME_BIT 18      /* consume group stop count */
1986 #define JOBCTL_TRAP_STOP_BIT    19      /* trap for STOP */
1987 #define JOBCTL_TRAP_NOTIFY_BIT  20      /* trap for NOTIFY */
1988 #define JOBCTL_TRAPPING_BIT     21      /* switching to TRACED */
1989 #define JOBCTL_LISTENING_BIT    22      /* ptracer is listening for events */
1990
1991 #define JOBCTL_STOP_DEQUEUED    (1 << JOBCTL_STOP_DEQUEUED_BIT)
1992 #define JOBCTL_STOP_PENDING     (1 << JOBCTL_STOP_PENDING_BIT)
1993 #define JOBCTL_STOP_CONSUME     (1 << JOBCTL_STOP_CONSUME_BIT)
1994 #define JOBCTL_TRAP_STOP        (1 << JOBCTL_TRAP_STOP_BIT)
1995 #define JOBCTL_TRAP_NOTIFY      (1 << JOBCTL_TRAP_NOTIFY_BIT)
1996 #define JOBCTL_TRAPPING         (1 << JOBCTL_TRAPPING_BIT)
1997 #define JOBCTL_LISTENING        (1 << JOBCTL_LISTENING_BIT)
1998
1999 #define JOBCTL_TRAP_MASK        (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2000 #define JOBCTL_PENDING_MASK     (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2001
2002 extern bool task_set_jobctl_pending(struct task_struct *task,
2003                                     unsigned int mask);
2004 extern void task_clear_jobctl_trapping(struct task_struct *task);
2005 extern void task_clear_jobctl_pending(struct task_struct *task,
2006                                       unsigned int mask);
2007
2008 #ifdef CONFIG_PREEMPT_RCU
2009
2010 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
2011 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
2012
2013 static inline void rcu_copy_process(struct task_struct *p)
2014 {
2015         p->rcu_read_lock_nesting = 0;
2016         p->rcu_read_unlock_special = 0;
2017 #ifdef CONFIG_TREE_PREEMPT_RCU
2018         p->rcu_blocked_node = NULL;
2019 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2020 #ifdef CONFIG_RCU_BOOST
2021         p->rcu_boost_mutex = NULL;
2022 #endif /* #ifdef CONFIG_RCU_BOOST */
2023         INIT_LIST_HEAD(&p->rcu_node_entry);
2024 }
2025
2026 #else
2027
2028 static inline void rcu_copy_process(struct task_struct *p)
2029 {
2030 }
2031
2032 #endif
2033
2034 static inline void tsk_restore_flags(struct task_struct *task,
2035                                 unsigned long orig_flags, unsigned long flags)
2036 {
2037         task->flags &= ~flags;
2038         task->flags |= orig_flags & flags;
2039 }
2040
2041 #ifdef CONFIG_SMP
2042 extern void do_set_cpus_allowed(struct task_struct *p,
2043                                const struct cpumask *new_mask);
2044
2045 extern int set_cpus_allowed_ptr(struct task_struct *p,
2046                                 const struct cpumask *new_mask);
2047 #else
2048 static inline void do_set_cpus_allowed(struct task_struct *p,
2049                                       const struct cpumask *new_mask)
2050 {
2051 }
2052 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2053                                        const struct cpumask *new_mask)
2054 {
2055         if (!cpumask_test_cpu(0, new_mask))
2056                 return -EINVAL;
2057         return 0;
2058 }
2059 #endif
2060
2061 #ifdef CONFIG_NO_HZ_COMMON
2062 void calc_load_enter_idle(void);
2063 void calc_load_exit_idle(void);
2064 #else
2065 static inline void calc_load_enter_idle(void) { }
2066 static inline void calc_load_exit_idle(void) { }
2067 #endif /* CONFIG_NO_HZ_COMMON */
2068
2069 #ifndef CONFIG_CPUMASK_OFFSTACK
2070 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2071 {
2072         return set_cpus_allowed_ptr(p, &new_mask);
2073 }
2074 #endif
2075
2076 /*
2077  * Do not use outside of architecture code which knows its limitations.
2078  *
2079  * sched_clock() has no promise of monotonicity or bounded drift between
2080  * CPUs, use (which you should not) requires disabling IRQs.
2081  *
2082  * Please use one of the three interfaces below.
2083  */
2084 extern unsigned long long notrace sched_clock(void);
2085 /*
2086  * See the comment in kernel/sched/clock.c
2087  */
2088 extern u64 cpu_clock(int cpu);
2089 extern u64 local_clock(void);
2090 extern u64 sched_clock_cpu(int cpu);
2091
2092
2093 extern void sched_clock_init(void);
2094
2095 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2096 static inline void sched_clock_tick(void)
2097 {
2098 }
2099
2100 static inline void sched_clock_idle_sleep_event(void)
2101 {
2102 }
2103
2104 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2105 {
2106 }
2107 #else
2108 /*
2109  * Architectures can set this to 1 if they have specified
2110  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2111  * but then during bootup it turns out that sched_clock()
2112  * is reliable after all:
2113  */
2114 extern int sched_clock_stable(void);
2115 extern void set_sched_clock_stable(void);
2116 extern void clear_sched_clock_stable(void);
2117
2118 extern void sched_clock_tick(void);
2119 extern void sched_clock_idle_sleep_event(void);
2120 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2121 #endif
2122
2123 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2124 /*
2125  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2126  * The reason for this explicit opt-in is not to have perf penalty with
2127  * slow sched_clocks.
2128  */
2129 extern void enable_sched_clock_irqtime(void);
2130 extern void disable_sched_clock_irqtime(void);
2131 #else
2132 static inline void enable_sched_clock_irqtime(void) {}
2133 static inline void disable_sched_clock_irqtime(void) {}
2134 #endif
2135
2136 extern unsigned long long
2137 task_sched_runtime(struct task_struct *task);
2138
2139 /* sched_exec is called by processes performing an exec */
2140 #ifdef CONFIG_SMP
2141 extern void sched_exec(void);
2142 #else
2143 #define sched_exec()   {}
2144 #endif
2145
2146 extern void sched_clock_idle_sleep_event(void);
2147 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2148
2149 #ifdef CONFIG_HOTPLUG_CPU
2150 extern void idle_task_exit(void);
2151 #else
2152 static inline void idle_task_exit(void) {}
2153 #endif
2154
2155 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2156 extern void wake_up_nohz_cpu(int cpu);
2157 #else
2158 static inline void wake_up_nohz_cpu(int cpu) { }
2159 #endif
2160
2161 #ifdef CONFIG_NO_HZ_FULL
2162 extern bool sched_can_stop_tick(void);
2163 extern u64 scheduler_tick_max_deferment(void);
2164 #else
2165 static inline bool sched_can_stop_tick(void) { return false; }
2166 #endif
2167
2168 #ifdef CONFIG_SCHED_AUTOGROUP
2169 extern void sched_autogroup_create_attach(struct task_struct *p);
2170 extern void sched_autogroup_detach(struct task_struct *p);
2171 extern void sched_autogroup_fork(struct signal_struct *sig);
2172 extern void sched_autogroup_exit(struct signal_struct *sig);
2173 #ifdef CONFIG_PROC_FS
2174 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2175 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2176 #endif
2177 #else
2178 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2179 static inline void sched_autogroup_detach(struct task_struct *p) { }
2180 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2181 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2182 #endif
2183
2184 extern int yield_to(struct task_struct *p, bool preempt);
2185 extern void set_user_nice(struct task_struct *p, long nice);
2186 extern int task_prio(const struct task_struct *p);
2187 /**
2188  * task_nice - return the nice value of a given task.
2189  * @p: the task in question.
2190  *
2191  * Return: The nice value [ -20 ... 0 ... 19 ].
2192  */
2193 static inline int task_nice(const struct task_struct *p)
2194 {
2195         return PRIO_TO_NICE((p)->static_prio);
2196 }
2197 extern int can_nice(const struct task_struct *p, const int nice);
2198 extern int task_curr(const struct task_struct *p);
2199 extern int idle_cpu(int cpu);
2200 extern int sched_setscheduler(struct task_struct *, int,
2201                               const struct sched_param *);
2202 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2203                                       const struct sched_param *);
2204 extern int sched_setattr(struct task_struct *,
2205                          const struct sched_attr *);
2206 extern struct task_struct *idle_task(int cpu);
2207 /**
2208  * is_idle_task - is the specified task an idle task?
2209  * @p: the task in question.
2210  *
2211  * Return: 1 if @p is an idle task. 0 otherwise.
2212  */
2213 static inline bool is_idle_task(const struct task_struct *p)
2214 {
2215         return p->pid == 0;
2216 }
2217 extern struct task_struct *curr_task(int cpu);
2218 extern void set_curr_task(int cpu, struct task_struct *p);
2219
2220 void yield(void);
2221
2222 /*
2223  * The default (Linux) execution domain.
2224  */
2225 extern struct exec_domain       default_exec_domain;
2226
2227 union thread_union {
2228         struct thread_info thread_info;
2229         unsigned long stack[THREAD_SIZE/sizeof(long)];
2230 };
2231
2232 #ifndef __HAVE_ARCH_KSTACK_END
2233 static inline int kstack_end(void *addr)
2234 {
2235         /* Reliable end of stack detection:
2236          * Some APM bios versions misalign the stack
2237          */
2238         return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2239 }
2240 #endif
2241
2242 extern union thread_union init_thread_union;
2243 extern struct task_struct init_task;
2244
2245 extern struct   mm_struct init_mm;
2246
2247 extern struct pid_namespace init_pid_ns;
2248
2249 /*
2250  * find a task by one of its numerical ids
2251  *
2252  * find_task_by_pid_ns():
2253  *      finds a task by its pid in the specified namespace
2254  * find_task_by_vpid():
2255  *      finds a task by its virtual pid
2256  *
2257  * see also find_vpid() etc in include/linux/pid.h
2258  */
2259
2260 extern struct task_struct *find_task_by_vpid(pid_t nr);
2261 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2262                 struct pid_namespace *ns);
2263
2264 /* per-UID process charging. */
2265 extern struct user_struct * alloc_uid(kuid_t);
2266 static inline struct user_struct *get_uid(struct user_struct *u)
2267 {
2268         atomic_inc(&u->__count);
2269         return u;
2270 }
2271 extern void free_uid(struct user_struct *);
2272
2273 #include <asm/current.h>
2274
2275 extern void xtime_update(unsigned long ticks);
2276
2277 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2278 extern int wake_up_process(struct task_struct *tsk);
2279 extern void wake_up_new_task(struct task_struct *tsk);
2280 #ifdef CONFIG_SMP
2281  extern void kick_process(struct task_struct *tsk);
2282 #else
2283  static inline void kick_process(struct task_struct *tsk) { }
2284 #endif
2285 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2286 extern void sched_dead(struct task_struct *p);
2287
2288 extern void proc_caches_init(void);
2289 extern void flush_signals(struct task_struct *);
2290 extern void __flush_signals(struct task_struct *);
2291 extern void ignore_signals(struct task_struct *);
2292 extern void flush_signal_handlers(struct task_struct *, int force_default);
2293 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2294
2295 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2296 {
2297         unsigned long flags;
2298         int ret;
2299
2300         spin_lock_irqsave(&tsk->sighand->siglock, flags);
2301         ret = dequeue_signal(tsk, mask, info);
2302         spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2303
2304         return ret;
2305 }
2306
2307 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2308                               sigset_t *mask);
2309 extern void unblock_all_signals(void);
2310 extern void release_task(struct task_struct * p);
2311 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2312 extern int force_sigsegv(int, struct task_struct *);
2313 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2314 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2315 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2316 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2317                                 const struct cred *, u32);
2318 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2319 extern int kill_pid(struct pid *pid, int sig, int priv);
2320 extern int kill_proc_info(int, struct siginfo *, pid_t);
2321 extern __must_check bool do_notify_parent(struct task_struct *, int);
2322 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2323 extern void force_sig(int, struct task_struct *);
2324 extern int send_sig(int, struct task_struct *, int);
2325 extern int zap_other_threads(struct task_struct *p);
2326 extern struct sigqueue *sigqueue_alloc(void);
2327 extern void sigqueue_free(struct sigqueue *);
2328 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2329 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2330
2331 static inline void restore_saved_sigmask(void)
2332 {
2333         if (test_and_clear_restore_sigmask())
2334                 __set_current_blocked(&current->saved_sigmask);
2335 }
2336
2337 static inline sigset_t *sigmask_to_save(void)
2338 {
2339         sigset_t *res = &current->blocked;
2340         if (unlikely(test_restore_sigmask()))
2341                 res = &current->saved_sigmask;
2342         return res;
2343 }
2344
2345 static inline int kill_cad_pid(int sig, int priv)
2346 {
2347         return kill_pid(cad_pid, sig, priv);
2348 }
2349
2350 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2351 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2352 #define SEND_SIG_PRIV   ((struct siginfo *) 1)
2353 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2354
2355 /*
2356  * True if we are on the alternate signal stack.
2357  */
2358 static inline int on_sig_stack(unsigned long sp)
2359 {
2360 #ifdef CONFIG_STACK_GROWSUP
2361         return sp >= current->sas_ss_sp &&
2362                 sp - current->sas_ss_sp < current->sas_ss_size;
2363 #else
2364         return sp > current->sas_ss_sp &&
2365                 sp - current->sas_ss_sp <= current->sas_ss_size;
2366 #endif
2367 }
2368
2369 static inline int sas_ss_flags(unsigned long sp)
2370 {
2371         return (current->sas_ss_size == 0 ? SS_DISABLE
2372                 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2373 }
2374
2375 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2376 {
2377         if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2378 #ifdef CONFIG_STACK_GROWSUP
2379                 return current->sas_ss_sp;
2380 #else
2381                 return current->sas_ss_sp + current->sas_ss_size;
2382 #endif
2383         return sp;
2384 }
2385
2386 /*
2387  * Routines for handling mm_structs
2388  */
2389 extern struct mm_struct * mm_alloc(void);
2390
2391 /* mmdrop drops the mm and the page tables */
2392 extern void __mmdrop(struct mm_struct *);
2393 static inline void mmdrop(struct mm_struct * mm)
2394 {
2395         if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2396                 __mmdrop(mm);
2397 }
2398
2399 /* mmput gets rid of the mappings and all user-space */
2400 extern void mmput(struct mm_struct *);
2401 /* Grab a reference to a task's mm, if it is not already going away */
2402 extern struct mm_struct *get_task_mm(struct task_struct *task);
2403 /*
2404  * Grab a reference to a task's mm, if it is not already going away
2405  * and ptrace_may_access with the mode parameter passed to it
2406  * succeeds.
2407  */
2408 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2409 /* Remove the current tasks stale references to the old mm_struct */
2410 extern void mm_release(struct task_struct *, struct mm_struct *);
2411
2412 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2413                         struct task_struct *);
2414 extern void flush_thread(void);
2415 extern void exit_thread(void);
2416
2417 extern void exit_files(struct task_struct *);
2418 extern void __cleanup_sighand(struct sighand_struct *);
2419
2420 extern void exit_itimers(struct signal_struct *);
2421 extern void flush_itimer_signals(void);
2422
2423 extern void do_group_exit(int);
2424
2425 extern int do_execve(struct filename *,
2426                      const char __user * const __user *,
2427                      const char __user * const __user *);
2428 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2429 struct task_struct *fork_idle(int);
2430 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2431
2432 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2433 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2434 {
2435         __set_task_comm(tsk, from, false);
2436 }
2437 extern char *get_task_comm(char *to, struct task_struct *tsk);
2438
2439 #ifdef CONFIG_SMP
2440 void scheduler_ipi(void);
2441 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2442 #else
2443 static inline void scheduler_ipi(void) { }
2444 static inline unsigned long wait_task_inactive(struct task_struct *p,
2445                                                long match_state)
2446 {
2447         return 1;
2448 }
2449 #endif
2450
2451 #define next_task(p) \
2452         list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2453
2454 #define for_each_process(p) \
2455         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2456
2457 extern bool current_is_single_threaded(void);
2458
2459 /*
2460  * Careful: do_each_thread/while_each_thread is a double loop so
2461  *          'break' will not work as expected - use goto instead.
2462  */
2463 #define do_each_thread(g, t) \
2464         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2465
2466 #define while_each_thread(g, t) \
2467         while ((t = next_thread(t)) != g)
2468
2469 #define __for_each_thread(signal, t)    \
2470         list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2471
2472 #define for_each_thread(p, t)           \
2473         __for_each_thread((p)->signal, t)
2474
2475 /* Careful: this is a double loop, 'break' won't work as expected. */
2476 #define for_each_process_thread(p, t)   \
2477         for_each_process(p) for_each_thread(p, t)
2478
2479 static inline int get_nr_threads(struct task_struct *tsk)
2480 {
2481         return tsk->signal->nr_threads;
2482 }
2483
2484 static inline bool thread_group_leader(struct task_struct *p)
2485 {
2486         return p->exit_signal >= 0;
2487 }
2488
2489 /* Do to the insanities of de_thread it is possible for a process
2490  * to have the pid of the thread group leader without actually being
2491  * the thread group leader.  For iteration through the pids in proc
2492  * all we care about is that we have a task with the appropriate
2493  * pid, we don't actually care if we have the right task.
2494  */
2495 static inline bool has_group_leader_pid(struct task_struct *p)
2496 {
2497         return task_pid(p) == p->signal->leader_pid;
2498 }
2499
2500 static inline
2501 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2502 {
2503         return p1->signal == p2->signal;
2504 }
2505
2506 static inline struct task_struct *next_thread(const struct task_struct *p)
2507 {
2508         return list_entry_rcu(p->thread_group.next,
2509                               struct task_struct, thread_group);
2510 }
2511
2512 static inline int thread_group_empty(struct task_struct *p)
2513 {
2514         return list_empty(&p->thread_group);
2515 }
2516
2517 #define delay_group_leader(p) \
2518                 (thread_group_leader(p) && !thread_group_empty(p))
2519
2520 /*
2521  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2522  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2523  * pins the final release of task.io_context.  Also protects ->cpuset and
2524  * ->cgroup.subsys[]. And ->vfork_done.
2525  *
2526  * Nests both inside and outside of read_lock(&tasklist_lock).
2527  * It must not be nested with write_lock_irq(&tasklist_lock),
2528  * neither inside nor outside.
2529  */
2530 static inline void task_lock(struct task_struct *p)
2531 {
2532         spin_lock(&p->alloc_lock);
2533 }
2534
2535 static inline void task_unlock(struct task_struct *p)
2536 {
2537         spin_unlock(&p->alloc_lock);
2538 }
2539
2540 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2541                                                         unsigned long *flags);
2542
2543 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2544                                                        unsigned long *flags)
2545 {
2546         struct sighand_struct *ret;
2547
2548         ret = __lock_task_sighand(tsk, flags);
2549         (void)__cond_lock(&tsk->sighand->siglock, ret);
2550         return ret;
2551 }
2552
2553 static inline void unlock_task_sighand(struct task_struct *tsk,
2554                                                 unsigned long *flags)
2555 {
2556         spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2557 }
2558
2559 #ifdef CONFIG_CGROUPS
2560 static inline void threadgroup_change_begin(struct task_struct *tsk)
2561 {
2562         down_read(&tsk->signal->group_rwsem);
2563 }
2564 static inline void threadgroup_change_end(struct task_struct *tsk)
2565 {
2566         up_read(&tsk->signal->group_rwsem);
2567 }
2568
2569 /**
2570  * threadgroup_lock - lock threadgroup
2571  * @tsk: member task of the threadgroup to lock
2572  *
2573  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2574  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2575  * change ->group_leader/pid.  This is useful for cases where the threadgroup
2576  * needs to stay stable across blockable operations.
2577  *
2578  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2579  * synchronization.  While held, no new task will be added to threadgroup
2580  * and no existing live task will have its PF_EXITING set.
2581  *
2582  * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2583  * sub-thread becomes a new leader.
2584  */
2585 static inline void threadgroup_lock(struct task_struct *tsk)
2586 {
2587         down_write(&tsk->signal->group_rwsem);
2588 }
2589
2590 /**
2591  * threadgroup_unlock - unlock threadgroup
2592  * @tsk: member task of the threadgroup to unlock
2593  *
2594  * Reverse threadgroup_lock().
2595  */
2596 static inline void threadgroup_unlock(struct task_struct *tsk)
2597 {
2598         up_write(&tsk->signal->group_rwsem);
2599 }
2600 #else
2601 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2602 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2603 static inline void threadgroup_lock(struct task_struct *tsk) {}
2604 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2605 #endif
2606
2607 #ifndef __HAVE_THREAD_FUNCTIONS
2608
2609 #define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2610 #define task_stack_page(task)   ((task)->stack)
2611
2612 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2613 {
2614         *task_thread_info(p) = *task_thread_info(org);
2615         task_thread_info(p)->task = p;
2616 }
2617
2618 static inline unsigned long *end_of_stack(struct task_struct *p)
2619 {
2620         return (unsigned long *)(task_thread_info(p) + 1);
2621 }
2622
2623 #endif
2624
2625 static inline int object_is_on_stack(void *obj)
2626 {
2627         void *stack = task_stack_page(current);
2628
2629         return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2630 }
2631
2632 extern void thread_info_cache_init(void);
2633
2634 #ifdef CONFIG_DEBUG_STACK_USAGE
2635 static inline unsigned long stack_not_used(struct task_struct *p)
2636 {
2637         unsigned long *n = end_of_stack(p);
2638
2639         do {    /* Skip over canary */
2640                 n++;
2641         } while (!*n);
2642
2643         return (unsigned long)n - (unsigned long)end_of_stack(p);
2644 }
2645 #endif
2646
2647 /* set thread flags in other task's structures
2648  * - see asm/thread_info.h for TIF_xxxx flags available
2649  */
2650 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2651 {
2652         set_ti_thread_flag(task_thread_info(tsk), flag);
2653 }
2654
2655 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2656 {
2657         clear_ti_thread_flag(task_thread_info(tsk), flag);
2658 }
2659
2660 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2661 {
2662         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2663 }
2664
2665 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2666 {
2667         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2668 }
2669
2670 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2671 {
2672         return test_ti_thread_flag(task_thread_info(tsk), flag);
2673 }
2674
2675 static inline void set_tsk_need_resched(struct task_struct *tsk)
2676 {
2677         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2678 }
2679
2680 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2681 {
2682         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2683 }
2684
2685 static inline int test_tsk_need_resched(struct task_struct *tsk)
2686 {
2687         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2688 }
2689
2690 static inline int restart_syscall(void)
2691 {
2692         set_tsk_thread_flag(current, TIF_SIGPENDING);
2693         return -ERESTARTNOINTR;
2694 }
2695
2696 static inline int signal_pending(struct task_struct *p)
2697 {
2698         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2699 }
2700
2701 static inline int __fatal_signal_pending(struct task_struct *p)
2702 {
2703         return unlikely(sigismember(&p->pending.signal, SIGKILL));
2704 }
2705
2706 static inline int fatal_signal_pending(struct task_struct *p)
2707 {
2708         return signal_pending(p) && __fatal_signal_pending(p);
2709 }
2710
2711 static inline int signal_pending_state(long state, struct task_struct *p)
2712 {
2713         if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2714                 return 0;
2715         if (!signal_pending(p))
2716                 return 0;
2717
2718         return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2719 }
2720
2721 /*
2722  * cond_resched() and cond_resched_lock(): latency reduction via
2723  * explicit rescheduling in places that are safe. The return
2724  * value indicates whether a reschedule was done in fact.
2725  * cond_resched_lock() will drop the spinlock before scheduling,
2726  * cond_resched_softirq() will enable bhs before scheduling.
2727  */
2728 extern int _cond_resched(void);
2729
2730 #define cond_resched() ({                       \
2731         __might_sleep(__FILE__, __LINE__, 0);   \
2732         _cond_resched();                        \
2733 })
2734
2735 extern int __cond_resched_lock(spinlock_t *lock);
2736
2737 #ifdef CONFIG_PREEMPT_COUNT
2738 #define PREEMPT_LOCK_OFFSET     PREEMPT_OFFSET
2739 #else
2740 #define PREEMPT_LOCK_OFFSET     0
2741 #endif
2742
2743 #define cond_resched_lock(lock) ({                              \
2744         __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2745         __cond_resched_lock(lock);                              \
2746 })
2747
2748 extern int __cond_resched_softirq(void);
2749
2750 #define cond_resched_softirq() ({                                       \
2751         __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);      \
2752         __cond_resched_softirq();                                       \
2753 })
2754
2755 static inline void cond_resched_rcu(void)
2756 {
2757 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2758         rcu_read_unlock();
2759         cond_resched();
2760         rcu_read_lock();
2761 #endif
2762 }
2763
2764 /*
2765  * Does a critical section need to be broken due to another
2766  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2767  * but a general need for low latency)
2768  */
2769 static inline int spin_needbreak(spinlock_t *lock)
2770 {
2771 #ifdef CONFIG_PREEMPT
2772         return spin_is_contended(lock);
2773 #else
2774         return 0;
2775 #endif
2776 }
2777
2778 /*
2779  * Idle thread specific functions to determine the need_resched
2780  * polling state.
2781  */
2782 #ifdef TIF_POLLING_NRFLAG
2783 static inline int tsk_is_polling(struct task_struct *p)
2784 {
2785         return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2786 }
2787
2788 static inline void __current_set_polling(void)
2789 {
2790         set_thread_flag(TIF_POLLING_NRFLAG);
2791 }
2792
2793 static inline bool __must_check current_set_polling_and_test(void)
2794 {
2795         __current_set_polling();
2796
2797         /*
2798          * Polling state must be visible before we test NEED_RESCHED,
2799          * paired by resched_task()
2800          */
2801         smp_mb__after_atomic();
2802
2803         return unlikely(tif_need_resched());
2804 }
2805
2806 static inline void __current_clr_polling(void)
2807 {
2808         clear_thread_flag(TIF_POLLING_NRFLAG);
2809 }
2810
2811 static inline bool __must_check current_clr_polling_and_test(void)
2812 {
2813         __current_clr_polling();
2814
2815         /*
2816          * Polling state must be visible before we test NEED_RESCHED,
2817          * paired by resched_task()
2818          */
2819         smp_mb__after_atomic();
2820
2821         return unlikely(tif_need_resched());
2822 }
2823
2824 #else
2825 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2826 static inline void __current_set_polling(void) { }
2827 static inline void __current_clr_polling(void) { }
2828
2829 static inline bool __must_check current_set_polling_and_test(void)
2830 {
2831         return unlikely(tif_need_resched());
2832 }
2833 static inline bool __must_check current_clr_polling_and_test(void)
2834 {
2835         return unlikely(tif_need_resched());
2836 }
2837 #endif
2838
2839 static inline void current_clr_polling(void)
2840 {
2841         __current_clr_polling();
2842
2843         /*
2844          * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
2845          * Once the bit is cleared, we'll get IPIs with every new
2846          * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
2847          * fold.
2848          */
2849         smp_mb(); /* paired with resched_task() */
2850
2851         preempt_fold_need_resched();
2852 }
2853
2854 static __always_inline bool need_resched(void)
2855 {
2856         return unlikely(tif_need_resched());
2857 }
2858
2859 /*
2860  * Thread group CPU time accounting.
2861  */
2862 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2863 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2864
2865 static inline void thread_group_cputime_init(struct signal_struct *sig)
2866 {
2867         raw_spin_lock_init(&sig->cputimer.lock);
2868 }
2869
2870 /*
2871  * Reevaluate whether the task has signals pending delivery.
2872  * Wake the task if so.
2873  * This is required every time the blocked sigset_t changes.
2874  * callers must hold sighand->siglock.
2875  */
2876 extern void recalc_sigpending_and_wake(struct task_struct *t);
2877 extern void recalc_sigpending(void);
2878
2879 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2880
2881 static inline void signal_wake_up(struct task_struct *t, bool resume)
2882 {
2883         signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2884 }
2885 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2886 {
2887         signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2888 }
2889
2890 /*
2891  * Wrappers for p->thread_info->cpu access. No-op on UP.
2892  */
2893 #ifdef CONFIG_SMP
2894
2895 static inline unsigned int task_cpu(const struct task_struct *p)
2896 {
2897         return task_thread_info(p)->cpu;
2898 }
2899
2900 static inline int task_node(const struct task_struct *p)
2901 {
2902         return cpu_to_node(task_cpu(p));
2903 }
2904
2905 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2906
2907 #else
2908
2909 static inline unsigned int task_cpu(const struct task_struct *p)
2910 {
2911         return 0;
2912 }
2913
2914 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2915 {
2916 }
2917
2918 #endif /* CONFIG_SMP */
2919
2920 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2921 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2922
2923 #ifdef CONFIG_CGROUP_SCHED
2924 extern struct task_group root_task_group;
2925 #endif /* CONFIG_CGROUP_SCHED */
2926
2927 extern int task_can_switch_user(struct user_struct *up,
2928                                         struct task_struct *tsk);
2929
2930 #ifdef CONFIG_TASK_XACCT
2931 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2932 {
2933         tsk->ioac.rchar += amt;
2934 }
2935
2936 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2937 {
2938         tsk->ioac.wchar += amt;
2939 }
2940
2941 static inline void inc_syscr(struct task_struct *tsk)
2942 {
2943         tsk->ioac.syscr++;
2944 }
2945
2946 static inline void inc_syscw(struct task_struct *tsk)
2947 {
2948         tsk->ioac.syscw++;
2949 }
2950 #else
2951 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2952 {
2953 }
2954
2955 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2956 {
2957 }
2958
2959 static inline void inc_syscr(struct task_struct *tsk)
2960 {
2961 }
2962
2963 static inline void inc_syscw(struct task_struct *tsk)
2964 {
2965 }
2966 #endif
2967
2968 #ifndef TASK_SIZE_OF
2969 #define TASK_SIZE_OF(tsk)       TASK_SIZE
2970 #endif
2971
2972 #ifdef CONFIG_MEMCG
2973 extern void mm_update_next_owner(struct mm_struct *mm);
2974 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2975 #else
2976 static inline void mm_update_next_owner(struct mm_struct *mm)
2977 {
2978 }
2979
2980 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2981 {
2982 }
2983 #endif /* CONFIG_MEMCG */
2984
2985 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2986                 unsigned int limit)
2987 {
2988         return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2989 }
2990
2991 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2992                 unsigned int limit)
2993 {
2994         return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2995 }
2996
2997 static inline unsigned long rlimit(unsigned int limit)
2998 {
2999         return task_rlimit(current, limit);
3000 }
3001
3002 static inline unsigned long rlimit_max(unsigned int limit)
3003 {
3004         return task_rlimit_max(current, limit);
3005 }
3006
3007 #endif